
	

	 	

YIELD_SENSITIVITY_FUNC	

TECHNICAL	REPORT		
Tuesday,	May	19,	2015	

Rafael	Nicolas	Fermin	Cota																																																																	

Jonathon	Barbaro	

Abstract	
This	Technical	Report	provides	a	full	explanation	of	the	YIELD_SENSITIVITY_FUNC	function,	as	

well	as	explanations	for	the	supporting	functions	within	it.		

	

	

Table	of	Contents	
Introduction	to	the	YIELD_SENSITIVITY_FUNC	function	..	1	

About	the	function	...	1	

Understanding	Duration	and	Convexity	...	2	

Setting-up	the	Function	..	3	

Function	Variables	..	3	

Input	Variables	...	3	

Counter	Variable	..	3	

Boundary	Variable	..	4	

Holder	Variables	...	4	

Matrix	Variable	...	4	

Error	Handling	..	4	

Output	One	..	5	

Determining	Values	for	Output	One	..	5	

Yield	to	Maturity	..	5	

Convexity	and	Modified	Duration	..	5	

Completing	the	Function	for	Output	One	..	5	

Output	Two	..	6	

Placing	the	Headings	..	6	

Determining	and	Formatting	the	Values	..	6	

The	if	Statement	...	6	

Placing	the	Values	..	7	

Secondary	Functions	..	8	

Introduction	to	the	Secondary	Functions	...	8	

BOND_YIELD_FUNC	..	8	

Purpose:	...	8	

Inputs:	..	8	

Further	Explanation	..	8	

PARAB_ZERO_FUNC	...	9	

Purpose:	...	9	

Inputs:	..	9	

Further	Explanation:	...	10	

CALL_BOND_YIELD_OBJ_FUNC	..	10	

	

	

Purpose:	...	10	

Inputs:	..	10	

Sub-Inputs:	...	10	

Further	Explanation:	...	10	

BOND_CASH_PRICE_FUNC	...	10	

Purpose:	...	10	

Inputs:	..	11	

Further	Explanation:	...	11	

COUPNUM_FUNC	...	12	

Purpose:	...	12	

Inputs:	..	12	

Further	Explanation:	...	12	

EDATE_FUNC	..	12	

Purpose:	...	12	

Inputs:	..	12	

Further	Explanation:	...	13	

COUPDAYBS_FUNC	...	13	

Purpose:	...	13	

Inputs:	..	13	

Further	Explanation:	...	13	

COUPPCD_FUNC	...	14	

Purpose:	...	14	

Inputs:	..	14	

Further	Explanation:	...	14	

COUPNCD_FUNC	..	14	

Purpose:	...	14	

Inputs:	..	14	

Further	Explanation:	...	14	

COUNT_DAYS_FUNC	..	15	

Purpose:	...	15	

Inputs:	..	15	

Further	Explanation:	...	15	

COUPDAYSNC_FUNC	..	16	

	

	

Purpose:	...	16	

Inputs:	..	16	

Further	Explanation:	...	16	

ACCRINT_FUNC	..	16	

Purpose:	...	16	

Inputs:	..	17	

Further	Explanation:	...	17	

BOND_CONVEXITY_DURATION_FUNC	...	18	

Purpose:	...	18	

Inputs:	..	18	

Further	Explanation:	...	18	

BOND_DATES_BOND_TENOR_FUNC	...	19	

Purpose:	...	19	

Inputs:	..	19	

Further	Explanation:	...	19	

DELTA_DURATION_PRICE_FUNC	..	20	

Purpose:	...	20	

Inputs:	..	20	

Further	Explanation:	...	20	

DELTA_CONVEXITY_PRICE_FUNC	...	21	

Purpose:	...	21	

Inputs:	..	21	

Further	Explanation:	...	21	

Source	Code	...	22	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

1	

Inputs Output

Introduction	to	the	YIELD_SENSITIVITY_FUNC	function	
About	the	function		
The	purpose	of	the	YIELD_SENSITIVITY_FUNC	function	is	the	generate	bond	prices	given	a	range	of	

specified	yields.	As	the	name	of	the	function	suggests	it	provides	sensitivity	analysis	on	bond	price	

movements	relative	to	changes	in	interest	rates.	

The	function	utilizes	the	popular	bond	portfolio	management	measurements	for	risk,	duration	and	

convexity,	in	order	to	provide	a	robust	analysis	for	its	user.		

The	function	is	capable	of	producing	two	outputs	depending	on	what	the	user	specifies.		

For	a	simple	analysis	of	a	bond	the	user	may	simply	request	the	yield	to	maturity,	along	with	the	

modified	duration	and	convexity.	This	output,	however,	will	not	generate	any	sensitivity	to	yield	

changes.	For	the	remainder	of	the	document	this	output	will	be	known	as	Output	One.		

For	a	more	thorough	analysis	the	user	may	request	the	second	output.	This	output	provides	the	

estimated	clean	price,	the	duration	predicted	price	change	(percentage),	the	duration	predicted	price,	

the	percentage	error	between	the	duration	predicted	price	change	and	the	estimated	clean	price,	the	

convexity	adjustment,	the	convexity	adjusted	predicted	price	change	(percentage),	the	convexity	

adjusted	predicted	price,	and	the	percentage	error	between	the	convexity	adjusted	predicted	price	and	

the	estimated	clean	price;	for	each	new	yield.	This	second	output	is	also	the	default	output	used	in	the	

TEST_VALIDATION	workbook	and	is	printed	to	the	CONVEX	worksheet.	For	the	remainder	of	the	

document	this	output	will	be	known	as	Output	Two.	An	example	of	the	excel	worksheet	is	provided	

below.		

	

	

	

	

	

	

	

	

It	is	important	to	note	that	to	produce	the	different	outputs,	the	function	calls	multiple	functions	within	

the	given	code.	As	such,	the	YIELD_SENSITIVITY_FUNC	function	can	be	thought	of	as	an	amalgamation	of	

several	functions	used	to	determine	all	of	the	required	outputs.	Because	these	secondary	functions	play	

such	an	important	role	in	the	YIELD_SENSITIVITY_FUNC	function,	they	will	also	be	discussed	in	the	

content	of	this	technical	report	for	the	benefit	of	the	reader.	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

2	

Understanding	Duration	and	Convexity		
In	order	to	gain	a	full	understanding	of	the	YIELD_SENSITIVITY_FUNC	function	it	is	important	for	the	user	

to	first	appreciate	the	concepts	that	underscore	its	purpose.	

In	bond	portfolio	management	Duration	and	Convexity	can	be	used	as	a	measure	of	risk	when	assessing	

a	particular	bond’s	merits.		

Duration	in	the	context	of	the	bond	asset	class	provides	two	valuable	measurements	for	an	investor.	

First,	it	is	a	measure	of	how	long,	in	years,	it	takes	for	the	price	of	a	bond	to	be	repaid.		And	second,	and	

more	specific	to	the	function,	it	acts	as	a	measure	of	risk	by	assessing	a	bond’s	price	volatility	relative	to	

an	increase	or	decrease	in	interest	rates.		

While	Duration	can	provide	a	rough	estimate	in	the	price	of	a	bond	given	a	specific	change	in	interest	

rates	it	alone	would	not	be	enough.	The	price	–	yield	relationship	of	a	bond	is	convex	in	nature,	

however,	the	Duration	function	is	linear.	This	means	that	in	extreme	cases	when	interest	rates	fall	or	

rise,	Duration	will	underestimate	the	upside	and	overestimate	the	downside.	In	order	to	compensate	for	

this	investors	look	for	a	convexity	adjustment	to	better	estimate	prices	changes	in	a	bond	for	a	given	

change	in	interest	rates.		

Convexity	is	also	a	useful	measure	when	assessing	bonds	that	have	the	same	duration.	If	for	instance	

bond	A	and	bond	B	have	the	same	duration	but	bond	A	is	more	convex	that	bond	B,	then	bond	A	may	be	

more	favorable	because	of	its	ability	to	better	capture	upside	and	limit	downside.	Refer	to	the	diagram	

below.		

	

	

	

	

	

	

	

	

	

	 	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

3	

Setting-up	the	Function		
Function	Variables	
Input	Variables		

Variable	 Type	 Description	

Output	 Integer	 Determines	which	of	the	two	outputs	the	function	will	produce.	If	

this	input	equals	zero,	the	function	will	produce	Output	Two;	if	this	

input	equals	any	other	integer	besides	zero,	the	function	will	

produce	Output	One.	

Clean_Price	 Double	 Input	for	the	current	clean	price	(cash	price	minus	accrued	

interest)	of	the	bond.	

Settlement	 Date	 The	date	the	transaction	would	settle	(the	date	you	take	

possession	of	the	bond).		

Maturity	 Date	 The	date	the	bond	matures.	

Coupon	 Double	 The	annual	coupon	rate	for	the	bond.	

Min_Yield	 Double	 The	minimum	yield	that	the	array	will	evaluate.	Sets	the	value	for	

the	first	entry	under	the	“New	Yield”	column	(Column	E	of	the	

Spreadsheet).		

Max_Yield	 Double	 The	maximum	yield	that	the	array	will	evaluate.	Sets	the	value	for	

the	last	entry	under	the	“New	Yield”	column.	

Delta_Yield	 Double	 Sets	the	increments	in	which	the	yield	increases	by	in	the	“New	

Yield”	column.	As	a	result,	Delta_Yield	will	determine	the	number	

of	entries	in	the	“New	Yield”	column	and	also,	the	size	of	the	array.	

Frequency	 Integer;	

Optional	

The	frequency	with	which	the	coupons	are	paid.	Default	

convention	is	semi-annual	coupon	payments	(Value	of	2).	

Redemption	 Double;	

Optional	

Par	value	of	the	bond,	or	amount	of	principal	that	is	returned	at	

the	maturity	date.	Default	setting	is	redemption	which	equals	100.	

Count_Basis	 Integer;	

Optional	

The	day	count	convention	that	the	bond	uses.	The	default	value	is	

0.	

Guess_Yield	 Double;	

Optional	

Defines	the	initial	interval	of	uncertainty	for	the	optimization	

performed	by	the	Parab_Zero_Func.	The	default	value	is	10%.	

	

Counter	Variable	
Variable	 Type	 Description	

i	 Long	 Used	in	loop	to	place	required	data	in	appropriate	rows	for	Output	

Two.	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

4	

	

Boundary	Variable	
Variable	 Type	 Description	

NROWS	 Long	 Used	to	identify	the	number	of	rows	that	are	required	for	the	final	

matrix	of	Output	Two.		

	

Holder	Variables	
Variable	 Type	 Description	

PYIELD_VAL	 Double	 Holds	output	from	the	BOND_YIELD_FUNC	function,	used	in	

Output	One.	

CONVEXITY_VAL	 Double	 Holds	the	value	for	convexity,	used	in	Output	One.		

MDURATION_VAL	 Double	 Holds	the	value	for	the	modified	duration,	used	in	Output	One.	

	

Matrix	Variable	
Variable	 Type	 Description	

TEMP_MATRIX	 Variable	 Used	to	hold	the	output	from	the	

BOND_CONVEXITY_DURATION_FUNC	function	early	in	the	code.	

Then	reused	to	hold	the	final	output	for	both	Output	One	and	

Output	Two.			

	

Error	Handling	
Once	the	function’s	inputs	and	variables	have	been	declared,	the	function	begins	with	some	initial	error	

handling.		

First	the	minimum	yield	is	checked	to	make	sure	that	it	is	less	than	the	maximum	yield.	Next	the	delta	

yield	is	checked	to	make	sure	that	it	does	not	equal	zero.	If	any	of	these	condition	are	not	met	then	the	

function	is	sent	to	the	ERROR_LABEL	and	the	function	returns	the	error	number.		

This	should	intuitively	make	sense	since	the	minimum	yield	required	for	sensitivity	purposes	cannot	

equal	or	be	greater	than	the	maximum	yield	in	the	analysis	and	the	delta	yield,	which	represents	the	

incremental	increase	in	yield	in	the	sensitivity	analysis,	cannot	equal	zero.		

	 	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

5	

Output	One	
Determining	Values	for	Output	One	
Yield	to	Maturity		
The	first	value	that	is	found	for	output	one	is	the	percent	yield	or	yield	to	maturity.	This	is	done	using	

the	BOND_YIELD_FUNC	function	and	the	output	is	set	equal	to	the	variable	PYIELD_VAL.	While	an	

explanation	of	the	BOND_YIELD_FUNC	function	is	given	in	the	Secondary	Functions	section	a	brief	

discussion	is	provided	below.		

The	formula	for	determining	the	YTM	of	a	bond	is:	

	

Equation	1:		Source	Fidelity	Investments	

Where	P	is	the	present	value	price	of	a	bond,	CF	are	the	constant	cash	flows	and	y	is	the	discount	factor	

or	in	this	case	the	YTM.		

In	a	scenario	where	all	the	cash	flows	from	a	bond	are	consistent	(coupon	and	principal	are	equal)	y	can	

be	solved	for	by	simply	rearranging	the	formula.	But	in	most	cases	when	the	cash	flows	from	a	bond	are	

not	equal,	an	iterative	process	is	needed.	This	iterative	process	tries	different	y	values	(YTM	values)	until	

the	above	equation	equals	the	current	price	of	the	bond.		

The	BOND_YIELD_FUNC	function	completes	this	task	using	the	parabola	zero	solver	function	to	iterate	

YTM	until	it	finds	a	YTM	that	produces	a	price	for	a	bond	equal	to	the	current	clean	price.		

Convexity	and	Modified	Duration		
Next	the	convexity	and	modified	duration	of	the	bond	is	determined.	This	is	done	using	the	

BOND_CONVEXITY_DURATION_FUNC	function.	This	secondary	function	is	also	discussed	more	in-depth	

in	the	Secondary	Functions	section,	and	for	now	it	is	only	important	to	note	that	the	function	produces	

four	outputs	that	are	placed	in	TEMP_MATRIX.	These	four	outputs	are	convexity,	modified	duration,	

duration	and	the	bond	cash	price.		

For	the	purposes	of	Output	One	only	the	first	two	are	needed.		

These	two	values	are	extracted	out	of	TEMP_MATRIX	and	placed	in	the	holder	variables	CONVEXITY_VAL	

and	MDURATION_VAL	respectively.	

Completing	the	Function	for	Output	One	
Once	the	values	for	output	one	are	determined,	the	only	thing	left	to	do	is	format	the	data	into	a	matrix.			

TEMP_MATRIX	is	once	again	used	but	this	time	to	house	the	final	output	for	Output	One.	TEMP_MATRIX	

is	re-dimensioned	to	have	three	rows	and	two	columns.		

In	the	first	three	rows	in	the	first	column	the	headings	are	placed	into	the	matrix.	They	are,	PERCENT	

YIELD,	MODIFIED	DURATION	and	CONVEXITY.		

Next	the	values	for	the	respective	headings	are	placed	into	the	matrix:	PYIELD_VAL,	MDURATION_VAL	

and	CONVEXITY_VAL.		

The	function	is	then	set	equal	to	TEMP_MATRIX	and	the	function	ends.		

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

6	

Output	Two	
Placing	the	Headings	
If	the	second	output	option	is	chosen,	the	code	will	still	Determine	the	values	used	in	Output	One	as	

some	will	still	be	needed	for	Output	Two,	however	will	bypass	the	code	that	was	discussed	in:	

Completing	the	Function	for	Output	One.		

In	this	case	the	function	moves	to	the	next	section	of	code	for	Output	Two.		

The	code	begins	by	determining	the	number	of	rows	that	will	be	needed	in	for	the	final	output	matrix.	

This	is	found	by	subtracting	the	max	yield	figure	from	the	min	yield	figure	and	dividing	by	the	delta	yield.		

This	number	is	then	set	equal	to	the	variable	NROWS.		

TEMP_MATRIX,	which	will	again	be	used	to	house	the	final	output	is	re-dimensioned	to	have	NROWS	

plus	1	number	of	rows	and	nine	columns.	The	actual	number	of	rows	in	TEMP_MATRIX	will	actually	be	

one	more	than	NROWS	plus	one,	since	it	is	dimensioned	in	base	0.	This	is	done	in	order	to	place	the	

headings	in	the	first	row	while	still	keeping	the	rest	of	the	code	in	base	1	format.		

If	the	reader	is	wondering	why	a	one	is	added	to	NROWS	to	determine	the	number	of	rows	it	is	because	

NROWS,	calculated	the	way	it	was,	will	always	be	one	row	short	the	actual	number	of	rows	needed.	

Consider	the	formula	to	determine	the	number	of	values	in	a	dataset:	

(MAX	VALUE	–	MIN	VALUE)/	Incremental	increase	(decrease)	+	1		

Consider	the	following	case	in	the	data	set	1,	1.5,	2,	2.5,	3.	The	max	number	=	3,	the	min	number	=	1	and	

the	incremental	increase	=	0.5.	Using	the	formula	initially	used	to	calculate	NROWS,	we	would	

determine	that	there	are	4	values	in	the	data	set.	However	that	would	be	incorrect,	there	are	5.	The	plus	

one	used	in	re-dimensioning	TEMP_MATRIX	accounts	for	this	kind	of	discrepancy.		

Next	the	headings	for	the	output	are	placed	into	the	first	row	of	the	matrix	in	each	of	the	nine	columns.	

In	order	they	are:	NEW	YIELD,	ESTIMATED	CLEAN	PRICE,	DURATION	PREDICTED	PRICE	CHANGE,	

DURATION	PREDICTED	PRICE,	ERROR,	CONVEXITY	ADJUSTEMENT,	CONVEXITY	ADJUSTED	PREDICTED	

PRICE	CHANGE,	CONVEXITY	ADJ	PRIDICTED	PRICE,	and	ERROR.	

In	first	row	of	the	first	column,	under	the	heading	NEW	YIELD	the	MIN_YIELD	value	is	placed.		

Determining	and	Formatting	the	Values		
In	the	code	for	Output	One,	the	values	were	first	calculated	and	then	in	a	different	processed	passed	

into	TEMP_MATRIX.	In	Output	Two,	however,	this	process	occurs	simultaneously.		

Because	Output	Two	produces	sensitivity	analysis	on	the	factors	identified	in	the	headings	for	given	

changes	in	yield,	the	calculations	for	each	heading	must	be	performed	repeatedly	for	each	new	yield.		

To	do	this	a	loop	is	used.		

This	loop	loops	from	1	until	NROWS	+	1.	Remember,	NROWS+1	represents	all	the	yields	in	the	data	set.		

The	if	Statement		
This	simple	if-statement	is	used	for	placed	the	NEW	YIELD	values	into	their	respective	cell.	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

7	

For	every	i	other	than	the	first	one,	the	NEW	YIELD	value	that	is	placed	in	the	first	column	of	the	ith	row	

is	equal	to	the	value	in	the	previous	column	plus	DELTA_YIELD	(the	incremental	increase).		

For	the	first	i,	the	first	row	of	the	first	column	directly	under	the	heading	NEW	YIELD	the	MIN_YIELD	

value	is	placed.		

Placing	the	Values	
The	i-loop	continues	after	the	if-statement,	and	for	each	value	of	i	the	following	process	ensues	to	place	

all	the	values	into	their	respective	place	within	TEMP_MATRIX:	

Heading/	Output	 Row	 Column	 Function/	Formula	Used	 Inputs	
ESTIMATED	CLEAN	

PRICE	

i	 2	 BOND_CASH_PRICE_FUNC	 SETTLEMENT,	MATURITY,	

COUPON,	TEMP_MATRIX(i,	1),	

FREQUENCY,	REDEMPTION,	

COUNT_BASIS,	1	

DURATION	PREDICTED	

PRICE	CHANGE	

i	 3	 DELTA_DURATION_PRICE_FUNC	 MDURATION_VAL,	

TEMP_MATRIX(i,	1),	

PYIELD_VAL	

DURATION	PREDICTED	

PRICE	

i	 4	 CLEAN_PRICE	*	(1	+	TEMP_MATRIX(i,	3))	 N/A	

ERROR	 i	 5	 (TEMP_MATRIX(i,	4)	-	TEMP_MATRIX(i,	

2))	/	TEMP_MATRIX(i,	2)	

N/A	

CONVEXITY	

ADJUSTEMENT	

i	 6	 0.5	*	CONVEXITY_VAL	*	

((TEMP_MATRIX(i,	1)	-	PYIELD_VAL)	^	2)	

N/A	

CONVEXITY	ADJUSTED	

PREDICTED	PRICE	

CHANGE	

i	 7	 DELTA_CONVEXITY_PRICE_FUNC	 CONVEXITY_VAL,	

MDURATION_VAL,	

TEMP_MATRIX(i,	1),	

PYIELD_VAL	

CONVEXITY	ADJ	

PRIDICTED	PRICE	

i	 8	 CLEAN_PRICE	*	(1	+	TEMP_MATRIX(i,	7))	 N/A	

ERROR	 i	 9	 (TEMP_MATRIX(i,	8)	-	TEMP_MATRIX(i,	

2))	/	TEMP_MATRIX(i,	2)	

N/A	

	

Further	detail	on	the	functions	used	can	be	found	in	the	Secondary	Functions	Section.	Furthermore,	the	

formulas	used	are	financial	formals	for	calculating	Convexity	and	Duration	adjustments	and	are	given	

below.		

DURATION	PREDICTED	PRICE	=	Original	Bond	Price	*	[1	+	Duration	Predicted	Price	Change	(%)]	

CONVEXITY	ADJUSTEMENT	=	0.5	*	Convexity	Value	*	change	in	YTM	

CONVEXITY	ADJ	PRIDICTED	PRICE	=	Original	Bond	Price	*	[1+	Convexity	Adjusted	Predicted	Price	Change	
(%)]	

The	function	is	then	set	equal	to	TEMP_MATRIX	and	the	function	ends.		

	 	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

8	

Secondary	Functions	
Introduction	to	the	Secondary	Functions	
This	section	provides	an	explanation	to	the	support	functions	used	within	the	YEILD_SENSITIVITY_FUNC	

function.			

BOND_YIELD_FUNC	
Purpose:	
The	BOND_YIELD_FUNC	utilizes	PARAB_ZERO_FUNC	and	CALL_BOND_YIELD_OBJ,	along	with	the	bond’s	

clean	price,	settlement	date,	maturity	date,	coupon	rate,	frequency	of	coupon	payments,	redemption	

value,	day	count	convention,	and	guess	yield	as	inputs,	to	accurately	calculate	the	yield	to	maturity	of	a	

bond.	

Inputs:	
Input	 Required?	 Description	

Clean_Price	 Yes	 The	value	of	the	bond	less	accrued	coupon.	

Settlement	 Yes	 The	date	that	the	bond	is	active	(either	the	day	the	trade	is	
executed	or	a	few	days	after).		

Maturity	 Yes	 The	date	that	the	bond	expires	and	the	initial	face	value	is	
returned.	

Coupon	 Yes	 The	interest	percent	earned	on	the	initial	face	value	of	the	bond.	

Frequency	 Optional	 The	number	of	interest	(coupon)	payments	made	to	the	bond	
holder	per	annum.	The	default	value	is	2	(semi-annual).	

Redemption	 Optional	 The	price	at	which	the	issuing	company	can	repurchase	a	bond,	
prior	to	maturity.	Default	is	100.		

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	
market	convention	(Ex.	convention	could	dictate	that	each	month	
has	30	days	and	that	a	year	has	360	days).	Default	is	0.		

Guess_Yield	 Optional	 A	starting	point	for	the	“guess	and	check”	process	of	calculating	
bond	yield.	Default	is	0.3.		

Further	Explanation	
The	function	calculates	yield	to	maturity	by	utilizing	PARAB_ZERO_FUNC	(which	is	explained	separately).		

Within	PARAB_ZERO_FUNC,	CALL_BOND_YIELD_OBJ_FUNC	will	be	used	as	an	input,	and	is	the	function	

that	calculates	yield	to	maturity.	However,	CALL_BOND_YIELD_OBJ_FUNC	needs	to	be	iterated	several	

times	to	converge	to	a	correct	yield	to	maturity,	and	needs	to	be	analyzed	to	see	if	there	were	no	errors	

in	the	calculation.		

Therefore,	BOND_YIELD_FUNC’s	purpose	is	to	utilize	CALL_BOND_YIELD_OBJ_FUNC,	

PARAB_ZERO_FUNC,	and	other	inputs	to	arrive	at	an	accurate	yield	to	maturity.	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

9	

Through	the	use	of	PARAB_ZERO_FUNC,	CALL_BOND_YIELD_OBJ_FUNC	will	be	looped	(utilized)	600	

times,	and	each	time	it	is	used,	it	should	get	closer	and	closer	to	the	correct	yield	to	maturity.	After	600	

times,	CONVERG_VAL,	which	is	affected	by	PARAB_ZERO_FUNC,	is	checked	to	see	if	it	is	within	the	

specified	tolerance	level.	If	it	is	not	within	the	tolerance	level,	then	CALL_BOND_YIELD_OBJ_FUNC	did	

not	converge	to	one	solution	as	planned,	and	the	GUESS_YIELD	is	used.	Likewise,	if	PARAB_ZERO_FUNC	

returns	a	yield	greater	than	2	^	52,	the	yield	is	thrown	out	as	a	calculation	error	resulted	in	a	yield	far	

too	big,	and	the	GUESS_YIELD	is	used.	Otherwise,	the	calculated	yield	is	used,	which	is	the	ideal	solution.	

PARAB_ZERO_FUNC	
Purpose:		
The	purpose	of	the	function	is	to	find	the	local	minimum	of	a	function	through	vertical	parabola	

interpolation.	This	function	is	used	in	BOND_YIELD_FUNC	to	help	converge	on	an	accurate	yield	to	

maturity	of	a	bond,	given	the	inputs.	

Inputs:	
	

Input	 Required?	 Description	

Lower_Val	 Yes	 PARAB_ZERO_FUNC	requires	an	interval	of	uncertainty	to	start	

the	iterations.	Lower_Val	is	the	lower	bound	of	the	uncertainty	

interval.		

	

Upper_Val	 Yes	 PARAB_ZERO_FUNC	requires	an	interval	of	uncertainty	to	start	

the	iterations.	Upper_Val	is	the	upper	bound	of	the	uncertainty	

interval.	

Func_Name_Str	 Yes	 PARAB_ZERO_FUNC	requires	a	function,	f(x)	that	it	will	find	a	

local	minimum	for.	The	function	should	be	inputted	as	a	string.	

Converg_Val	 Optional	 The	value	that	you	want	f(x*)	to	converge	to.	The	default	value	is	

zero.	

Counter	 Optional	 Counts	the	number	of	iterations	that	have	elapsed.	The	default	

value	is	zero.	

NLOOPS	 Optional	 Defines	the	number	of	iterations	that	the	function	should	

perform	until	it	should	exit	the	function	(if	the	function	has	not	

found	x*	which	satisfies	the	defined	tolerance).	The	default	value	

is	100.	

Tolerance	 Optional	 The	error	range	that	the	function	is	willing	to	accept.	In	many	

cases,	a	precise	value	for	x*,	where	f(x*)	=	Converg_Val,	will	only	

be	found	when	nLOOPS	approaches	infinity,	therefore	the	

tolerance	allows	for	an	acceptable	difference	between	f(x*)	and	

Converg_Val.	The	default	value	is	0.000000000000001.		

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

10	

Further	Explanation:	
For	a	given	function,	f(x),	PARAB_ZERO_FUNC	continuously	shrinks	the	interval	of	uncertainty	

[Lower_Val,	Upper_Val]	until	it	finds	a	point	within	the	interval	that	satisfies	the	specified	tolerance	

level,	or	until	the	number	of	specified	loops/iterations	have	elapsed.	If	the	number	of	loops	have	

elapsed	without	a	satisfactory	point	being	returned,	the	function	will	return	0	and	reset	the	Converg_Val	

equal	to	2.	

Looking	back	at	BOND_YIELD_FUNC,	PARAB_ZERO_FUNC	was	used	to	determine	a	maturity	rate.	If	the	

correct	(or	near-correct)	yield	to	maturity	rate	is	found,	then	the	absolute	difference	between	the	

Upper_Val	and	Lower_Val	should	be	smaller	than	the	tolerance	rate,	and	the	calculated	yield	will	

become	the	value	of	the	PARAB_ZERO_FUNC.			

CALL_BOND_YIELD_OBJ_FUNC	
Purpose:		
This	function	returns	the	price	of	the	bond	given	its	yield.	It	is	used	to	call	the	BOND_CASH_PRICE_FUNC	

to	pass	a	yield	and	return	the	bond	price.		

Inputs:		
X_VAL:	The	yield	input	used	to	calculate	the	bond	price.		

Sub-Inputs:	
The	characteristics	of	the	bond	that	will	be	priced	with	yield,	X_VAL,	and	the	actual	clean	price	of	the	

bond	are	pulled	from	the	inputs	prescribed	in	the	BOND_YIELD_FUNC:	

PUB_BOND_ARR(1):	Coupon	

PUB_BOND_ARR(2):	Frequency	

PUB_BOND_ARR(3):	Redemption	

PUB_BOND_ARR(4):	Count_Basis	

PUB_BOND_ARR(5):	Clean_Price	

PUB_BOND_ARR(6):	Maturity	

PUB_BOND_ARR(7):	Settlement	

Further	Explanation:	
The	function	calculates	an	error	value	by	taking	the	difference	between	the	bond	price	with	the	yield	

(X_VAL)	and	the	actual	bond	price,	and	squaring	it.	The	function	provides	an	indication	of	how	close	the	

yield	(X_VAL)	is	to	the	true	yield	to	maturity.	The	function	will	be	used	in	the	optimization	calculation,	

PARAB_ZERO_FUNC,	to	find	the	correct	yield	to	maturity	of	a	bond.	When	the	difference	between	the	

bond	price	with	the	yield	(X_VAL)	and	the	actual	bond	price	equals	zero	(or	some	tolerance	that	is	very	

close	to	zero),	then	X_VAL	is	equal	to	the	yield	to	maturity.	

BOND_CASH_PRICE_FUNC	
Purpose:		
The	function	will	return	the	cash	or	clean	price	of	a	security	that	pays	periodic	interest.	In	addition,	

based	on	the	OUTPUT	input,	the	function	will	add	or	not	add	accumulated	interest.		

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

11	

Inputs:	
Input	 Required?	 Description	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.		

Coupon	 Yes	 The	interest	percent	earned	on	the	initial	face	value	of	the	bond.		

Yield	 Yes	 The	rate	for	discounting	cash	flows	to	determine	the	clean	price	

(i.e.	the	Return	on	Investment).		

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Redemption	 Optional	 The	price	at	which	the	issuing	company	can	repurchase	a	security	

(bond,	in	this	case)	prior	to	maturity.	The	default	value	is	100.	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

Case	0,	1,	4	represent	30	day	months	with	360	days	in	a	year.	

Case	2	represents	the	actual	days	in	a	month	with	360	days	in	a	

year.	Case	3	represents	the	actual	days	in	a	month	with	365	days	

in	a	year.	

	

Output	 Optional	 Depending	on	the	output,	the	BOND_CASH_PRICE_FUNC	will	add	

the	accumulated	interest	to	the	price.	If	it	is	Case	0,	the	function	

returns	the	cash	price	with	accumulated	interest.	If	it	is	not	equal	

to	Case	0,	it	will	return	the	clean	price.	The	default	value	is	Case	

0.	

	

Further	Explanation:	
The	function	discounts	the	future	cash	flows	of	the	bond	using	k-compounding	convention.		

There	are	three	possible	cases.		

If	the	settlement	date	comes	after	the	maturity	date,	then	the	BOND_CASH_PRICE_FUNC	=	0.		

Next,	if	the	settlement	and	the	maturity	date	are	the	same	then	the	BOND_CASH_PRICE_FUNC	equals	

the	redemption	value	for	the	bond	(par	value	+	coupon	on	the	maturity	date).		

If	those	two	cases	are	invalid,	then	the	function	calculates	either	the	cash	price	or	clean	price	of	the	

bond,	using	the	specified	market	convention.		

Select	Case	COUNT_BASIS	determines	the	month/year	market	convention	used.	In	addition,	Select	Case	

Output	decides	whether	to	use	the	Cash	Price	(Case	0)	or	Clean	Price	(any	Case	besides	0)	of	the	bond.		

This	function	is	used	along	with	BOND_CASH_PRICE_FUNC	to	determine	the	price	of	the	bond	given	its	

yield.	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

12	

COUPNUM_FUNC	
Purpose:		
This	function	calculates	the	number	of	coupon	payments	that	are	remaining	in	the	bond.		

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.		

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

	

Further	Explanation:	
There	are	four	possible	cases	that	will	evaluate	how	many	coupon	payments	are	remaining.	

First,	if	there	is	less	than	one	coupon	payment	per	year,	then	the	COUP_NUM=0,	and	therefore	there	

are	no	remaining	coupons.	

Next,	if	the	maturity	date	of	the	bond	comes	before	the	settlement	date	(date	that	the	bond	was	

purchased),	then	there	are	no	coupon	payments	remaining.	This	would	likely	never	happen,	but	it	is	

included	to	make	the	model	more	adaptable.	

Last,	if	the	settlement	date	and	the	maturity	date	are	on	the	same	day	(the	bond	is	purchased	on	the	

same	day	it	expires),	then	the	bond	owner	can	expect	one	more	coupon	payment,	so	COUP_NUM=1.	

This	makes	sense	because	when	the	maturity	date	arrives,	the	bond	holder	receives	the	last	coupon	

payment	as	well	as	the	principal	amount.	

If	those	three	cases	do	not	occur,	then	the	EDATE_FUNC	sets	the	date	value	to	the	settlement	date	and	

loops	through,	adding	6	months	each	time	to	the	date.	It	loops	until	the	date	exceeds	maturity	date.	

Each	loop	adds	one	to	the	counter	(j)	and	then,	it	returns	j	(which	is	set	to	equal	the	COUPNUM_FUNC,	

and	therefore	the	number	of	coupons	that	are	remaining	in	the	bond.)	

EDATE_FUNC	
Purpose:		
This	function	will	return	a	serial	number	that	is	the	indicated	number	of	months	before	or	after	the	

specified	start	date,	and	a	maturity	date	that	falls	on	the	same	day	of	the	given	start	date.	

Inputs:	
Input	 Required?	 Description	

Date_Val	 Optional	 Date_Val	is	a	date	that	represents	the	start	date.	To	avoid	

problems,	dates	should	be	entered	using	the	Excel	DATE	

function.	For	example,	use	DATE(2008,5,23)	for	the	23rd	day	of	

May,	2008.	Problems	can	occur	if	the	dates	are	entered	as	text.	

The	default	value	is	0.	

Months	 Optional	 The	number	of	months	before	or	after	the	specified	start	date,	

wherein	a	positive	equals	a	future	date	and	a	negative	equals	a	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

13	

past	date.	The	default	value	is	1.		

	

Further	Explanation:	
The	beginning	of	the	function	states	that	if	the	Date_Val	=	0,	then	the	function	should	use	the	current	

date	as	the	start	date.	Next,	the	function	will	use	the	Date_Val	result	and	add/minus	the	specified	

number	of	months	after	the	start	date	(based	on	the	Months	input)	to	give	a	maturity	date.		

This	function	is	used	within	several	other	functions,	including	COUPNUM_FUNC,	COUPPCD_FUNC,	and	

COUPNCD_FUNC.		

COUPDAYBS_FUNC	
Purpose:		
The	function	returns	(not	calculates)	the	number	of	days	from	the	previous	coupon	payment	to	the	

settlement	date.		

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

Further	Explanation:	
Date_Val	is	a	variable	which	calls	the	COUPPCD_FUNC	function,	and	uses	the	settlement	date	

(Settlement),	maturity	of	the	bond	(Maturity),	and	the	number	of	interest	payments	made	per	year	as	

inputs	to	determine	the	days	from	the	previous	coupon	date	until	settlement	date	(Frequency).	

Afterwards,	“i",	another	input,	through	calling	the	COUNT_DAYS_FUNC	function,	uses	the	output	from	

Date_Val,	along	with	the	settlement	date	(Settlement),	and	the	number	of	days	between	two	coupon	

dates	(Count_Basis),	to	determine	the	number	of	days	between	the	previous	coupon	payment.	

It	returns	an	error	in	two	specific	situations:	

If	Frequency	(the	number	of	interest	payments	to	the	bond)	is	less	than	1.	

If	Maturity	(the	maturity	date	when	the	bond	expires)	is	before	Settlement	(the	settlement	date).	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

14	

COUPPCD_FUNC	
Purpose:		
This	function	will	calculate	(not	return)	the	number	of	days	from	the	previous	coupon	date	until	the	

settlement	date.	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

	

Further	Explanation:		
There	are	three	cases.	

First,	if	the	Frequency	is	less	than	1,	then	COUPPCD_FUNC	=	0	and	therefore	the	number	of	days	from	

the	previous	coupon	date	until	the	settlement	date	is	0.		

Second,	if	Maturity	<=	Settlement,	then	COUPPCD	=	0.		

Third,	using	the	COUPNCD_FUNC	(which	will	represent	the	next	coupon	payment	date),	the	

COUPPCD_FUNC	references	the	next	coupon	payment	date	and	then	uses	the	EDATE_FUNC	to	identify	

how	many	months	earlier	the	last	coupon	payment	was.	Therefore,	if	there	are	semi-annual	coupons,	

then	the	output	will	be	6	months	previous	from	the	next	coupon	date.	

COUPNCD_FUNC	
Purpose:		
This	function	returns	the	next	coupon	payment	date	for	a	bond.	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

	

Further	Explanation:	
There	are	three	cases.	

First,	when	the	Frequency	is	less	than	1	(i.e.	No	coupon	payments	to	the	bond	holder)	the	output	is	0	

because	there	is	no	next	coupon	payment	date.		

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

15	

Second,	if	the	maturity	date	is	before	the	settlement	date,	the	output	is	also	0	days	because	there	are	

no	more	coupon	payment	dates.	If	the	Maturity	and	Settlement	date	are	the	same,	the	function	outputs	

the	maturity	date	implying	that	the	next	coupon	payment	is	the	same	date	as	the	date	of	purchase.		

Third,	if	the	maturity	date	comes	after	the	settlement	date,	the	function	identifies	how	many	coupon	

payments	are	remaining	less	the	final	maturity	payment.	By	referencing	the	EDATE_FUNC,	

COUPNCD_FUNC	can	use	the	Frequency	input	to	determine	how	many	months	before	the	maturity	date	

the	next	coupon	payment	is	due.	

COUNT_DAYS_FUNC	
Purpose:		
The	function	calculates	the	number	of	days	between	two	specified	dates.		

Inputs:	
Input	 Required?	 Description	

Start_Date	 Yes	 The	start	date,	needs	to	be	a	“date”	type	variable	

End_Date	 Yes	 The	end	date,	needs	to	be	a	“date”	type	variable	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

For	a	value	of	0	COUNT_DAYS_FUNC	applies	a	NASD	approach	to	

calculating	days	(30/360)	

	

For	a	value	of	1,2,3	the	COUNT_DAYS_FUNC	calculates	the	exact	

number	of	days	between	the	Start_Date	and	End_Date	(actual	

convention	approach)	

	

For	a	value	of	4	or	greater,	COUNT_DAYS_FUNC	applies	a	

European	approach	to	calculating	days	(Europe	30)	

	

Further	Explanation:	
The	function	first	assigns	the	start	date	and	end	date	as	date	entities,	then	the	day,	month,	and	year	as	

numerical	values.		

Afterwards,	the	function	ensures	that	the	start	date	and	end	date	cannot	be	zero	and	that	the	end	date	

cannot	be	before	the	start	date	(an	error	will	be	given	otherwise).		

Next,	the	function	calculates	the	difference	between	the	in	the	number	of	days	between	Start_Date	and	

End_Date,	based	on	the	Count_Basis	input.		

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

16	

COUPDAYSNC_FUNC	
Purpose:	
	This	function	calculates	the	time	to	the	next	coupon	payment	in	days.	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

For	a	value	of	0,	COUNT_DAYS_FUNC,	the	function	called	within	

COUPDAYSNC_FUNC,	applies	a	NASD	approach	to	calculating	

days	(30/360)	

	

For	a	value	of	1,2,3	the	COUNT_DAYS_FUNC,	the	function	called	

within	COUPDAYSNC_FUNC,	calculates	the	exact	number	of	days	

between	the	Start_Date	and	End_Date	(actual	convention	

approach)	

	

For	a	value	of	4	or	greater,	COUNT_DAYS_FUNC,	the	function	

called	within	COUPDAYSNC_FUNC,	applies	a	European	approach	

to	calculating	days	(Europe	30)	

	

Further	Explanation:	
There	are	two	cases.	

The	first	case	is,	if	there	are	no	coupon	payments	left	(frequency	<	1)	or	the	maturity	date	is	before	the	

settlement	date,	then	the	output	would	be	zero.		

The	second	case	is,	the	function	counts	the	days	between	now	and	the	next	coupon	payment	date	by	

setting	DATE_VAL	(which	calls	on	COUPNCD_FUNC),	as	the	next	coupon	payment	date.		

Afterwards,	“i”,	a	variable,	calls	on	COUNT_DAYS_FUNC	to	count	the	number	of	days	between	the	

Settlement	date	and	DATE_VAL,	based	on	the	Count_Basis	input.	

ACCRINT_FUNC	
Purpose:	
	Returns	the	accrued	interest	of	a	security	(bond)	that	pays	periodic	interest	since	its	last	coupon	
payment.		

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

17	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Coupon	 Yes	 The	interest	percent	earned	on	the	initial	face	value	of	the	bond.		

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

For	a	Case	value	of	0	or	4,	US	(NASD)	30/360	is	used,	which	

means	that	each	month	has	30	days	and	there	are	360	days	in	a	

year.	

	

In	Case	1,	the	real	dates	are	used	(actual	month	lengths	and	

actual	year	lengths).	

	

In	Case	2,	the	actual	month	lengths	are	used	but	years	are	only	

360	days.	

	

In	Case	3,	the	actual	month	lengths	are	used	but	years	are	always	

365	days.	

	

	

Further	Explanation:	
First,	the	function	checks	if	the	maturity	date	is	equal	to	the	settlement	date	or	before	the	settlement	

date.	As	well,	the	function	checks	if	the	frequency	of	interest	payments	is	less	than	1	per	annum	or	if	

there	is	a	coupon	rate	of	zero	or	less.	If	any	of	these	are	true	then	the	accrued	interest	is	set	to	zero	and	

the	function	exits,	as	there	is	a	problem	with	one	of	the	inputs.	

Afterwards,	

• Pdays_Val,	calling	on	the	COUPDAYBS_FUNC,	calculates	how	many	days	since	the	last	bond	

payment.		

• Ndays_Val	calling	on	the	COUPDAYSNC_FUNC,	calculates	how	many	days	until	your	next	bond	

payment.		

• Variable	“J”	is	Pdays_Val	plus	Ndays_Val,	which	represents	the	time	that	has	accrued.		

If	no	time	has	accrued,	J	would	equal	0,	and	therefore	ACCRINT_FUNC	will	also	be	set	to	0	as	no	interest	

would	have	accrued.	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

18	

Next,	based	on	the	case	selected	from	Count_Basis,	the	amount	of	interest	is	calculated	by	using	

Coupon,	Frequency,	and	Factor_Val	(which	is	the	variable	“J”	after	it	goes	through	Count_Basis)	as	

inputs.	

BOND_CONVEXITY_DURATION_FUNC	
Purpose:	
The	function	calculates	and	returns	the	modified	and	Macaulay	duration	and	Convexity	Table	of	a	bond.	

These	values	will	be	used	as	a	measure	of	a	bond	price's	response	to	changes	in	yield.	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Coupon	 Yes	 The	interest	percent	earned	on	the	initial	face	value	of	the	bond.		

Yield	 Yes	 The	rate	for	discounting	cash	flows	to	determine	the	clean	price	

(i.e.	the	Return	on	Investment).		

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Redemption	 Optional	 Par	value	of	the	bond,	or	the	amount	of	principal	that	is	returned	

at	the	maturity	date.	Default	setting	is	100.	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

Output	 Optional	 If	it	is	Case	0,	the	function	returns	the	cash	price	with	

accumulated	interest.	If	it	is	not	equal	to	Case	0,	the	function	will	

return	the	clean	price.	The	default	value	is	Case	0.	

	

Further	Explanation:	
First,	the	function	checks	if	the	maturity	date	is	less	than	the	settlement	date,	in	which	case	the	function	

returns	zero	as	the	maturity	date	should	never	be	less	than	the	settlement	date.		

Afterwards,	the	function	calls	the	BOND_DATES_BOND_TENOR_FUNC,	using	Settlement,	Maturity,	

Frequency,	and	Count_Basis	as	inputs,	to	create	a	vector	of	payment	periods	in	terms	of	years	from	

purchase	date.		

Next,	there	are	two	possible	scenarios	based	on	the	Output	variable.	

If	Output	variable	is	0,	then	an	array	listing	the	convexity,	modified	and	Macaulay	duration,	and	price	of	

the	bond	characterized	by	the	provided	inputs	will	be	produced.	

These	values	are	calculated	through	several	steps.	First,	the	function	sums	the	present	value	of	coupons	

(Temp1_sum)	using	a	loop,	which	also	discounts	each	coupon	payment	with	their	respective	yield	and	

discount	period.	Afterwards,	the	duration	(Temp2_sum)	is	calculated	by	using	a	loop	that	sums	the	time	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

19	

weighted	PV	of	each	coupon.	Then,	the	convexity	is	calculated	(Temp3_Sum)	by	using	a	loop	that	sums	

the	convexity	values.	From	these	sums,	BOND_CONVEXITY_DURATION_FUNC	will	output	an	array	with	

the	convexity	as	the	first	element,	modified	duration	as	the	second	element,	Macaulay	duration	as	the	

third	element,	and	the	bond	price	as	the	fourth	element.	

However,	if	the	output	variable	is	not	0,	then	the	output	will	be	a	“i	x	7”	(i	representing	number	of	

payments)	column	table	with	each	column	representing	Tenor,	Payments,	Discount	Factors,	PV	of	

Payments,	PV	Weights,	Duration,	and	Convexity.	These	values	are	calculated	in	a	similar	fashion	as	the	

method	used	when	the	Output	variable	is	0.			

BOND_DATES_BOND_TENOR_FUNC	
Purpose:		
The	purpose	of	BOND_DATES_BOND_TENOR_FUNC	is	to	take	the	settlement	date	and	the	maturity	date	

as	an	input,	with	optional	inputs	of	frequency	and	count	basis,	in	order	to	calculate	the	amount	of	time	

left	until	the	bond	matures.	This	is	known	as	the	tenor.	In	other	words,	the	function	creates	a	vector	of	

payment	periods	in	terms	of	years	from	the	settlement	date.	The	output	is	useful	in	determining	bond	

duration	and	convexity	as	both	relate	to	the	timing	of	the	payments.	

Inputs:	
Input	 Required?	 Description	

Settlement	 Yes	 The	settlement	date	(the	date	the	bond	trade	settles).	

Maturity	 Yes	 When	the	bond	is	set	to	mature/expire,	and	the	face	value	is	

returned.	

Frequency	 Optional	 Frequency	of	interest	coupon	payments	per	annum.	The	default	

value	is	2	(semi-annual	coupon	payments).	

Count_Basis	 Optional	 The	number	of	days	between	two	coupon	dates	as	decided	by	

market	convention	(Ex.	convention	could	dictate	that	each	

month	has	30	days	and	that	a	year	has	360	days).	The	default	is	

Case	0.	

	

Case	0,	4,	and	1	use	Actual	Days	Per	Month,	Actual	Year	Length	

to	calculate	the	amount	of	time	left	until	the	time	matures.	

	

Case	2	and	3	remove	leap	year	factors	by	using	exactly	360	or	

365	days,	respectfully,	for	the	year	length.		

Further	Explanation:	
There	are	four	cases.		

	

First,	if	the	frequency	of	the	coupon	payment	is	less	than	one,	then	the	function	equals	zero	

(BOND_DATES_BOND_TENOR_FUNC	=	0),	meaning	there	is	no	tenor.		

	

Second,	if	the	settlement	date	is	after	the	maturity	date,	the	bond	has	already	matured,	and	therefore	

the	tenor	is	zero.		

	

Third,	if	the	settlement	date	equals	the	maturity	date,	then	the	tenor	equals	the	maturity	date.	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

20	

	

If	the	first	three	cases	do	not	occur,	then	the	function	will	calculate	Pdays_Val,	Ndays_Val,	and	NSIZE.		

Pdays_Val	represents	the	number	of	days	since	the	last	coupon	payment,	calculated	by	calling	

COUPDAYBS_FUNC	and	using	Settlement,	Maturity,	Frequency,	and	Count_Basis	as	input.	

Ndays_Val	represents	the	number	of	days	until	the	next	coupon	payment,	calculated	by	calling	

COUPDAYSNC_FUNC	and	using	Settlement,	Maturity,	Frequency,	and	Count_Basis	as	input.		

NSIZE	is	the	addition	of	NDAYS_VAL	and	PDAYS_VAL,	representing	the	time	between	two	coupon	

payments.		

Afterwards,	based	on	the	Case	selected	for	Count_Basis,	the	Temp_Factor,	which	represents	the	

proportion	of	time	that	has	passed	since	the	last	coupon	payment	divided	by	the	entire	time	between	

two	coupon	payments	(fractional	payments),	will	be	calculated.		

Next,	variable	“j”	will	be	calculated,	which	is	equal	to	the	number	of	coupon	payments	left	in	the	bond.	

“j”	is	calculated	by	calling	on	the	COUPNUM_FUNC	and	having	Settlement,	Maturity,	and	Frequency	as	

inputs.	

Afterwards	the	Temp_Vector	is	set	up.	

In	the	Temp_Vector’s	first	cell,	the	equation	of	(1/Frequency)	–	(Temp_Factor/Frequency)	represents	

the	time	that	has	passed	since	settlement,	with	1/Frequency	representing	the	time	remaining	until	the	

bond	matures	and	Temp_Factor/Frequency	representing	the	number	of	days	between	coupon	

payments	divided	by	the	number	days	in	a	year.		

From	cell	2	until	the	cell	containing	the	last	coupon	payment,	the	previous	cell’s	value	is	added	to	

1/Frequency	(which	again,	represents	the	portion	of	time	until	the	bond	matures).	This	sum	is	the	

amount	of	time	between	each	coupon	payment.	The	sum	of	the	sums	will	be	equal	to	the	amount	of	

time	until	the	bond	matures.		

Last,	the	function	is	this	array/value	with	BOND_DATES_BOND_TENOR_FUNC	=	Temp_Vector.	

DELTA_DURATION_PRICE_FUNC	
Purpose:		
The	function	calculates	the	change	in	a	bond’s	price	given	a	change	in	yield	and	the	bond’s	duration.		

Inputs:	
Input	 Required?	 Description	

MDuration_Val	 Yes	 The	modified	duration	of	the	bond.		

Yield1_Val	 Yes	 The	new	yield	of	the	bond.	

Yield0_Val	 Yes	 The	original	yield	of	the	bond.		

	

Further	Explanation:	
The	function	calculates	the	change	in	the	bond	price	if	the	yield	was	to	move	from	Yield0_Val	to	

Yield1_Val.		

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	

	

21	

Please	note	this	function	does	not	take	into	account	a	change	in	a	bond	price	due	to	a	change	in	

convexity,	which	is	dealt	with	through	DELTA_CONVEXITY_PRICE_FUNC.		

The	formula	for	DELTA_DURATION_PRICE_FUNC	is	(–MDuration_Val	*	(Yield1_Val	–	Yield0_Val)).		

Since	modified	duration	is	the	first	derivative	of	bond	price	with	respect	to	yield,	modified	duration	

multiplied	by	the	change	in	yield	will	approximate	the	percentage	change	in	bond	price.	Since	the	bond	

pricing	function	is	not	linear,	this	calculation	will	only	be	accurate	for	very	small	changes	in	yield	(when	

Yield1_Val	is	close	to	Yield0_Val).		

DELTA_CONVEXITY_PRICE_FUNC	
Purpose:	
	This	function	calculates	the	change	in	a	bond’s	price	given	a	change	in	the	bond’s	yield,	taking	convexity	
into	account.	

Inputs:	
Input	 Required?	 Description	

Convexity_Val	 Yes	 The	convexity	of	the	bond.		

MDuration_Val	 Yes	 The	modified	duration	of	the	bond.	

Yield1_Val	 Yes	 The	new	yield	of	the	bond.	

Yield0_Val	 Yes	 The	original	yield	of	the	bond.		

	

Further	Explanation:	
Since	the	relationship	between	bond	price	and	yield	is	convex,	duration	changes	when	yield	changes.	To	

more	precisely	calculate	the	change	in	bond	price	for	a	specified	change	in	yield	(especially	when	

Yield0_Val	and	Yield1_Val	are	not	close;	large	change	in	yield)	this	function	takes	into	consideration	the	

incremental	impact	that	convexity	(the	second	derivative	of	bond	price	with	respect	to	yield)	has	on	the	

change	in	a	bond’s	price.		

Therefore,	by	taking	convexity	into	account,	Yield0_Val	and	Yield1_Val	do	not	have	to	be	close,	in	order	

to	calculate	an	accurate	change	in	the	bond’s	price.		

Convexity	is	taken	to	account	through	Adj_Val,	which	is	(0.5	*	Convexity_Val	*	((Yield1_Val	–	Yield0_Val)	

^	2)).	Adj_Val’s	formula	approximates	the	incremental	impact	of	convexity	on	the	bond	price.	

The	output	of	Adj_Val	and	the	sum	of	DELTA_DURATION_PRICE_FUNC,	with	MDuration_Val,	Yield1_Val,	

and	Yield0_Val	as	inputs,	then	equals	the	DELTA_CONVEXITY_PRICE_FUNC.		

	

Overall,	the	DELTA_CONVEXITY_PRICE_FUNC	is	a	more	precise	approximation	of	the	percentage	change	

in	bond	price	for	the	specified	yield	change,	because	it	takes	into	consideration	both	duration.	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

22	

Source	Code	
	

'**	

'**	

'FUNCTION						:	YIELD_SENSITIVITY_FUNC	

'DESCRIPTION			:	YIELD	SENSITIVITY	TABLE	

'LIBRARY							:	BOND	

'GROUP									:	DURATION	

'ID												:	002	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	YIELD_SENSITIVITY_FUNC(ByVal	OUTPUT	As	Integer,	_	

ByVal	CLEAN_PRICE	As	Double,	_	

ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

ByVal	COUPON	As	Double,	_	

ByVal	MIN_YIELD	As	Double,	_	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

23	

ByVal	MAX_YIELD	As	Double,	_	

ByVal	DELTA_YIELD	As	Double,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	REDEMPTION	As	Double	=	100,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0,	_	

Optional	ByVal	GUESS_YIELD	As	Double	=	0.1)	

	

Dim	i	As	Long	

Dim	NROWS	As	Long	

	

Dim	PYIELD_VAL	As	Double	

Dim	CONVEXITY_VAL	As	Double	

Dim	MDURATION_VAL	As	Double	

	

Dim	TEMP_MATRIX	As	Variant	

	

On	Error	GoTo	ERROR_LABEL	

	

If	MIN_YIELD	>=	MAX_YIELD	Then:	GoTo	ERROR_LABEL	

If	DELTA_YIELD	=	0	Then:	GoTo	ERROR_LABEL	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

24	

PYIELD_VAL	=	BOND_YIELD_FUNC(CLEAN_PRICE,	SETTLEMENT,	MATURITY,	COUPON,	FREQUENCY,	REDEMPTION,	COUNT_BASIS,	GUESS_YIELD)	

TEMP_MATRIX	=	BOND_CONVEXITY_DURATION_FUNC(SETTLEMENT,	MATURITY,	COUPON,	PYIELD_VAL,	FREQUENCY,	REDEMPTION,	
COUNT_BASIS,	0)	

CONVEXITY_VAL	=	TEMP_MATRIX(LBound(TEMP_MATRIX)	+	0)	

MDURATION_VAL	=	TEMP_MATRIX(LBound(TEMP_MATRIX)	+	1)	

	

'---	

If	OUTPUT	<>	0	Then	

'---	

				ReDim	TEMP_MATRIX(1	To	3,	1	To	2)	

				TEMP_MATRIX(1,	1)	=	"PERCENT	YIELD"	

				TEMP_MATRIX(2,	1)	=	"MODIFIED	DURATION"	

				TEMP_MATRIX(3,	1)	=	"CONVEXITY"	

					

				TEMP_MATRIX(1,	2)	=	PYIELD_VAL	

				TEMP_MATRIX(2,	2)	=	MDURATION_VAL	

				TEMP_MATRIX(3,	2)	=	CONVEXITY_VAL	

'---	

Else	

'---	

				NROWS	=	((MAX_YIELD	-	MIN_YIELD)	/	DELTA_YIELD)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

25	

				ReDim	TEMP_MATRIX(0	To	NROWS	+	1,	1	To	9)	

				TEMP_MATRIX(0,	1)	=	"NEW	YIELD"	

				TEMP_MATRIX(0,	2)	=	"ESTIMATED	CLEAN	PRICE"	

				TEMP_MATRIX(0,	3)	=	"DURATION	PREDICTED	PRICE	CHANGE"	

				TEMP_MATRIX(0,	4)	=	"DURATION	PREDICTED	PRICE"	

				TEMP_MATRIX(0,	5)	=	"ERROR"	

				TEMP_MATRIX(0,	6)	=	"CONVEXITY	ADJUSTMENT"	

				TEMP_MATRIX(0,	7)	=	"CONVEXITY	ADJUSTED	PREDICTED	PRICE	CHANGE"	

				TEMP_MATRIX(0,	8)	=	"CONVEXITY	ADJ.	PREDICTED	PRICE"	

				TEMP_MATRIX(0,	9)	=	"ERROR"	

				TEMP_MATRIX(1,	1)	=	MIN_YIELD	

				For	i	=	1	To	NROWS	+	1	

								If	i	>	1	Then	

												TEMP_MATRIX(i,	1)	=	TEMP_MATRIX(i	-	1,	1)	+	DELTA_YIELD	'New	Yield	

								Else	

												TEMP_MATRIX(i,	1)	=	MIN_YIELD	'New	Yield	

								End	If	

								TEMP_MATRIX(i,	2)	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	TEMP_MATRIX(i,	1),	FREQUENCY,	REDEMPTION,	
COUNT_BASIS,	1)	'Bond	Clean	Price	

								TEMP_MATRIX(i,	3)	=	DELTA_DURATION_PRICE_FUNC(MDURATION_VAL,	TEMP_MATRIX(i,	1),	PYIELD_VAL)	
'Duration_Predicted_Price_Change	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

26	

								TEMP_MATRIX(i,	4)	=	CLEAN_PRICE	*	(1	+	TEMP_MATRIX(i,	3))	'Duration	Predicted	Price	

								TEMP_MATRIX(i,	5)	=	(TEMP_MATRIX(i,	4)	-	TEMP_MATRIX(i,	2))	/	TEMP_MATRIX(i,	2)	'Error	

								TEMP_MATRIX(i,	6)	=	0.5	*	CONVEXITY_VAL	*	((TEMP_MATRIX(i,	1)	-	PYIELD_VAL)	^	2)	'Convexity	Adjustment	

								TEMP_MATRIX(i,	7)	=	DELTA_CONVEXITY_PRICE_FUNC(CONVEXITY_VAL,	MDURATION_VAL,	TEMP_MATRIX(i,	1),	PYIELD_VAL)	'Convexity	
Adjusted	Predicted	Price	Change	

								TEMP_MATRIX(i,	8)	=	CLEAN_PRICE	*	(1	+	TEMP_MATRIX(i,	7))	'Convexity	Adj.	-->	Predicted	Price	

								TEMP_MATRIX(i,	9)	=	(TEMP_MATRIX(i,	8)	-	TEMP_MATRIX(i,	2))	/	TEMP_MATRIX(i,	2)	'Error	

				Next	i	

'---	

End	If	

'---	

YIELD_SENSITIVITY_FUNC	=	TEMP_MATRIX	

	

Exit	Function	

ERROR_LABEL:	

YIELD_SENSITIVITY_FUNC	=	Err.number	

End	Function	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

27	

'**	

'**	

'FUNCTION						:	BOND_YIELD_FUNC	

'DESCRIPTION			:	Returns	the	yield	of	a	security	that	pays	periodic	interest.	

'LIBRARY							:	BOND	

'GROUP									:	YIELD	

'ID												:	003	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	15-06-2010	

'**	

'**	

	

Function	BOND_YIELD_FUNC(ByVal	CLEAN_PRICE	As	Double,	_	

ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

ByVal	COUPON	As	Double,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	REDEMPTION	As	Double	=	100,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0,	_	

Optional	ByVal	GUESS_YIELD	As	Double	=	0.3)	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

28	

Dim	nLOOPS	As	Long	

Dim	CONVERG_VAL	As	Integer	

	

Dim	COUNTER	As	Long	

	

Dim	Y_VAL	As	Double	

Dim	tolerance	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

	

If	(MATURITY	<=	SETTLEMENT)	Then	

				BOND_YIELD_FUNC	=	0	

				Exit	Function	

End	If	

	

ReDim	PUB_BOND_ARR(1	To	7)	

PUB_BOND_ARR(1)	=	COUPON:	PUB_BOND_ARR(2)	=	FREQUENCY	

PUB_BOND_ARR(3)	=	REDEMPTION:	PUB_BOND_ARR(4)	=	COUNT_BASIS	

PUB_BOND_ARR(5)	=	CLEAN_PRICE:	PUB_BOND_ARR(6)	=	MATURITY	

PUB_BOND_ARR(7)	=	SETTLEMENT	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

29	

CONVERG_VAL	=	0:	COUNTER	=	0:	nLOOPS	=	600:	tolerance	=	10	^	-15	

	

Y_VAL	=	PARAB_ZERO_FUNC(-GUESS_YIELD,	GUESS_YIELD,	"CALL_BOND_YIELD_OBJ_FUNC",	CONVERG_VAL,	COUNTER,	nLOOPS,	tolerance)	

'Y_VAL	=	SECANT_ZERO_FUNC(-GUESS_YIELD,	GUESS_YIELD,	"CALL_BOND_YIELD_OBJ_FUNC",	CONVERG_VAL,	COUNTER,	nLOOPS,	tolerance)	

'Y_VAL	=	NEWTON_ZERO_FUNC(GUESS_YIELD,	"CALL_BOND_YIELD_OBJ_FUNC",	"",	CONVERG_VAL,	COUNTER,	nLOOPS,	tolerance)	

'Y_VAL	=	MULLER_ZERO_FUNC(-GUESS_YIELD,	GUESS_YIELD,	"CALL_BOND_YIELD_OBJ_FUNC",	CONVERG_VAL,	COUNTER,	nLOOPS,	tolerance)	

If	CONVERG_VAL	<>	0	Or	Y_VAL	=	2	^	52	Then	

				BOND_YIELD_FUNC	=	GUESS_YIELD	

Else	

				BOND_YIELD_FUNC	=	Y_VAL	

End	If	

'BOND_YIELD_FUNC	=	CALL_TEST_ZERO_FRAME_FUNC(-GUESS_YIELD,	GUESS_YIELD,	"CALL_BOND_YIELD_OBJ_FUNC",	nLOOPS,	tolerance)	

	

Exit	Function	

ERROR_LABEL:	

BOND_YIELD_FUNC	=	PUB_EPSILON	

End	Function	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

30	

'**	

'**	

'FUNCTION						:	PARAB_ZERO_FUNC	

'DESCRIPTION			:	Calculates	the	values	necessary	to	achieve	a	specific	goal	-	

'implements	the	vertical	parabola	interpolation	method	

'LIBRARY							:	OPTIMIZATION	

'GROUP									:	UNIVAR_ZERO	

'ID												:	020	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	12/08/2008	

'**	

'**	

	

Function	PARAB_ZERO_FUNC(ByVal	LOWER_VAL	As	Double,	_	

ByVal	UPPER_VAL	As	Double,	_	

ByVal	FUNC_NAME_STR	As	String,	_	

Optional	ByRef	CONVERG_VAL	As	Integer,	_	

Optional	ByRef	COUNTER	As	Long,	_	

Optional	ByVal	nLOOPS	As	Long	=	100,	_	

Optional	ByVal	tolerance	As	Double	=	1e-15)	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

31	

'---	

'	parabola	implements	the	vertical	parabola	interpolation	method.	

'		Parameters:	

'				Input/output,	real	X,	X1,	X2	

'				On	input,	three	distinct	points	that	start	the	method.	

'				On	output,	X	is	an	approximation	to	a	root	of	the	equation	

'				which	satisfies	abs	(F(X))	<	ABSERR,	and	X1	and	X2	are	the	

'				previous	estimates.	

'---	

	

	

Dim	ATEMP_VAL	As	Double	

Dim	BTEMP_VAL	As	Double	

Dim	CTEMP_VAL	As	Double	

	

Dim	TEMP_DELTA	As	Double	

Dim	TEMP_DERIV	As	Double	

	

Dim	FIRST_DELTA	As	Double	

Dim	SECOND_DELTA	As	Double	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

32	

Dim	TEMP_FUNC	As	Double	

Dim	FIRST_FUNC	As	Double	

Dim	SECOND_FUNC	As	Double	

	

Dim	LOWER_POINT	As	Double	

Dim	UPPER_POINT	As	Double	

Dim	DELTA_POINT	As	Double	

	

Dim	TEMP_POINT	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

	

'	

'		Initialization.	

'	

		CONVERG_VAL	=	0	

		COUNTER	=	0	

		DELTA_POINT	=	LOWER_VAL	

		LOWER_VAL	=	UPPER_VAL	

		UPPER_VAL	=	(LOWER_VAL	+	DELTA_POINT)	/	2	

		SECOND_FUNC	=	Excel.Application.Run(FUNC_NAME_STR,	UPPER_VAL)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

33	

		FIRST_FUNC	=	Excel.Application.Run(FUNC_NAME_STR,	LOWER_VAL)	

		TEMP_FUNC	=	Excel.Application.Run(FUNC_NAME_STR,	DELTA_POINT)	

'	

'		Iteration	loop:	

'	

		Do	

'	

'		If	the	error	tolerance	is	satisfied,	then	exit.	

'	

				If	(Abs(SECOND_FUNC)	<=	tolerance)	Then	

								TEMP_POINT	=	UPPER_VAL	

								PARAB_ZERO_FUNC	=	TEMP_POINT	

						Exit	Function	

				End	If	

					

				If	(Abs(UPPER_VAL	-	LOWER_VAL)	<=	tolerance)	Then	

								TEMP_POINT	=	UPPER_VAL	

								PARAB_ZERO_FUNC	=	TEMP_POINT	

						Exit	Function	

				End	If	

				COUNTER	=	COUNTER	+	1	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

34	

	

				If	(COUNTER	>	nLOOPS)	Then	

						CONVERG_VAL	=	2	

								PARAB_ZERO_FUNC	=	TEMP_POINT	

						Exit	Function	

				End	If	

	

				ATEMP_VAL	=	LOWER_VAL	-	DELTA_POINT	

				BTEMP_VAL	=	LOWER_VAL	-	UPPER_VAL	

				CTEMP_VAL	=	DELTA_POINT	-	UPPER_VAL	

					

				SECOND_DELTA	=	(FIRST_FUNC	-	SECOND_FUNC)	/	BTEMP_VAL	

				FIRST_DELTA	=	(TEMP_FUNC	-	SECOND_FUNC)	/	CTEMP_VAL	

					

				LOWER_POINT	=	(SECOND_DELTA	-	FIRST_DELTA)	/	ATEMP_VAL	

				UPPER_POINT	=	(BTEMP_VAL	*	FIRST_DELTA	-	_	

																			CTEMP_VAL	*	SECOND_DELTA)	/	ATEMP_VAL	

					

				TEMP_DELTA	=	UPPER_POINT	^	2	-	4	*	LOWER_POINT	*	SECOND_FUNC	

					

				If	TEMP_DELTA	<	0	Then	TEMP_DELTA	=	0	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

35	

				TEMP_DERIV	=	-2	*	SECOND_FUNC	/	(UPPER_POINT	+	_	

																				Sgn(UPPER_POINT)	*	Sqr(TEMP_DELTA))	

	

'		Remember	current	data	for	next	step.	

	

				DELTA_POINT	=	LOWER_VAL	

				TEMP_FUNC	=	FIRST_FUNC	

				LOWER_VAL	=	UPPER_VAL	

				FIRST_FUNC	=	SECOND_FUNC	

'	

'		Update	the	iterate	and	function	values.	

'	

				UPPER_VAL	=	UPPER_VAL	+	TEMP_DERIV	

				SECOND_FUNC	=	Excel.Application.Run(FUNC_NAME_STR,	UPPER_VAL)	

	

		Loop	

					

Exit	Function	

ERROR_LABEL:	

				PARAB_ZERO_FUNC	=	PUB_EPSILON	

End	Function	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

36	

'**	

'**	

'FUNCTION						:	CALL_BOND_YIELD_OBJ_FUNC	

'DESCRIPTION			:	Bond	Yield	Function	for	the	Root	finding	algorithm	

'LIBRARY							:	BOND	

'GROUP									:	YIELD	

'ID												:	004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	15-06-2010	

'**	

'**	

	

Function	CALL_BOND_YIELD_OBJ_FUNC(ByRef	X_VAL	As	Double)	

	

Dim	Y_VAL	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

	

Y_VAL	=	BOND_CASH_PRICE_FUNC(PUB_BOND_ARR(7),	_	

								PUB_BOND_ARR(6),	_	

								PUB_BOND_ARR(1),	_	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

37	

								X_VAL,	_	

								PUB_BOND_ARR(2),	_	

								PUB_BOND_ARR(3),	_	

								PUB_BOND_ARR(4),	1)	

	

CALL_BOND_YIELD_OBJ_FUNC	=	Abs(Y_VAL	-	PUB_BOND_ARR(5))	^	2	

	

Exit	Function	

ERROR_LABEL:	

CALL_BOND_YIELD_OBJ_FUNC	=	PUB_EPSILON	

End	Function	

	

	

	

	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

38	

'**	

'**	

'FUNCTION						:	BOND_CASH_PRICE_FUNC	

'DESCRIPTION			:	Returns	the	cash	or	clean	price	of	a	security	that	pays	

'periodic	interest.	

'LIBRARY							:	BOND	

'GROUP									:	YIELD	

'ID												:	001	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	BOND_CASH_PRICE_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

ByVal	COUPON	As	Double,	_	

ByVal	YIELD	As	Double,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	REDEMPTION	As	Double	=	100,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0,	_	

Optional	ByVal	OUTPUT	As	Integer	=	0)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

39	

	

Dim	h	As	Long	

Dim	i	As	Long	'PERIODS	

Dim	j	As	Long	'COUPONS	

Dim	k	As	Long	

	

Dim	PDAYS_VAL	As	Double	

Dim	NDAYS_VAL	As	Double	

	

Dim	TEMP_SUM	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

					

If	SETTLEMENT	>	MATURITY	Then	

				BOND_CASH_PRICE_FUNC	=	0	

				Exit	Function	

End	If	

If	SETTLEMENT	=	MATURITY	Then	

				BOND_CASH_PRICE_FUNC	=	REDEMPTION	

				Exit	Function	

End	If	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

40	

	

k	=	FREQUENCY	

If	k	=	0	Then:	k	=	k	+	1	

	

i	=	COUPNUM_FUNC(SETTLEMENT,	MATURITY,	k)	

PDAYS_VAL	=	COUPDAYBS_FUNC(SETTLEMENT,	MATURITY,	k,	COUNT_BASIS)	

NDAYS_VAL	=	COUPDAYSNC_FUNC(SETTLEMENT,	MATURITY,	k,	COUNT_BASIS)	

j	=	PDAYS_VAL	+	NDAYS_VAL	

	

'--	

Select	Case	COUNT_BASIS	

'--	

Case	0,	1,	4	'US	(NASD)	30/360	;	Actual/Actual;	European	30/360	

'--	

Case	2	'Actual	/	360	-->	PERFECT	

'--	

				PDAYS_VAL	=	((j	/	(360	/	k))	*	PDAYS_VAL)	

				NDAYS_VAL	=	j	-	(PDAYS_VAL)	

'--	

Case	3	'Actual	/	365	-->	PERFECT	

'--	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

41	

				PDAYS_VAL	=	((j	/	(365	/	k))	*	PDAYS_VAL)	

				NDAYS_VAL	=	j	-	(PDAYS_VAL)	

'--	

End	Select	

'--	

TEMP_SUM	=	0	

For	h	=	1	To	i:	TEMP_SUM	=	TEMP_SUM	+	(100	*	(COUPON	/	k)	/	(1	+	(YIELD	/	k))	^	(h	-	1	+	(NDAYS_VAL	/	j))):	Next	h	

TEMP_SUM	=	REDEMPTION	/	((1	+	YIELD	/	k)	^	(i	-	1	+	(NDAYS_VAL	/	j)))	+	TEMP_SUM	-	100	*	(COUPON	/	k)	*	(PDAYS_VAL	/	j)	

	

Select	Case	OUTPUT	

Case	0	'Cash	Price	

				BOND_CASH_PRICE_FUNC	=	TEMP_SUM	+	ACCRINT_FUNC(SETTLEMENT,	MATURITY,	COUPON,	k,	COUNT_BASIS)	

Case	Else	'Clean	Price	

				BOND_CASH_PRICE_FUNC	=	TEMP_SUM	

End	Select	

	

Exit	Function	

ERROR_LABEL:	

BOND_CASH_PRICE_FUNC	=	PUB_EPSILON	

End	Function	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

42	

'**	

'**	

'FUNCTION						:	COUPNUM_FUNC	

'DESCRIPTION			:	Calculates	the	number	of	coupons	remaining	on	a	bond	

'LIBRARY							:	BOND	

'GROUP									:	COUPON	

'ID												:	001	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	COUPNUM_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2)	

	

Dim	i	As	Long	

Dim	j	As	Long	

Dim	DATE_VAL	As	Date	

	

On	Error	GoTo	ERROR_LABEL	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

43	

	

i	=	1000	

	

If	(FREQUENCY	<	1)	Then	

				COUPNUM_FUNC	=	0	

				Exit	Function	

End	If	

	

If	(MATURITY	<	SETTLEMENT)	Then	

				COUPNUM_FUNC	=	0	

				Exit	Function	

End	If	

	

If	(SETTLEMENT	=	MATURITY)	Then	

				COUPNUM_FUNC	=	1	

				Exit	Function	

End	If	

	

j	=	0	

DATE_VAL	=	SETTLEMENT	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

44	

Do	While	DATE_VAL	<	MATURITY	

				j	=	j	+	1	

				DATE_VAL	=	EDATE_FUNC(DATE_VAL,	(12	/	FREQUENCY))	

				If	j	>	i	Then:	GoTo	ERROR_LABEL	

Loop	

									

COUPNUM_FUNC	=	j	

	

'YEARS_VAL	=	YEARFRAC_FUNC(SETTLEMENT,	MATURITY,	COUNT_BASIS)	

'FRACTION_VAL	=	(YEARS_VAL	*	FREQUENCY	-	Int(YEARS_VAL	*	FREQUENCY))	/	FREQUENCY	

'YEARS_VAL	=	YEARS_VAL	-	FRACTION_VAL	

'	Correction	if	SETTLEMENT	is	ex-COUPON	date	

'If	FRACTION_VAL	=	0	Then	

'				FRACTION_VAL	=	1	/	FREQUENCY	

'				YEARS_VAL	=	YEARS_VAL	-	1	/	FREQUENCY	

'End	If	

'NUMBER_COUPONS_FUNC	=	1	+	YEARS_VAL	*	FREQUENCY	

Exit	Function	

ERROR_LABEL:	

COUPNUM_FUNC	=	Err.number	

End	Function	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

45	

'**	

'**	

'FUNCTION						:	EDATE_FUNC	

'DESCRIPTION			:	Returns	the	serial	number	that	represents	the	date	that	

'is	the	indicated	number	of	months	before	or	after	a	specified	date	

'(the	start_date).	Use	EDATE	to	calculate	maturity	dates	or	due	dates	

'that	fall	on	the	same	day	of	the	month	as	the	date	of	issue.	

'LIBRARY							:	DATE	

'GROUP									:	COUNT	

'ID												:	002	

'LAST	UPDATE			:	11	/	02	/	2004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'**	

'**	

	

Function	EDATE_FUNC(Optional	ByVal	DATE_VAL	As	Date	=	0,	_	

Optional	ByVal	months	As	Variant	=	1)	

	

'DATE_VAL:	is	a	date	that	represents	the	start	date.	Dates	should	

'be	entered	by	using	the	DATE	function,	or	as	results	of	other	formulas	

'or	functions.	For	example,	use	DATE(2008,5,23)	for	the	23rd	day	of	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

46	

'May,	2008.	Problems	can	occur	if	dates	are	entered	as	text.	

	

'Months:	is	the	number	of	months	before	or	after	DATE_VAL.	A	positive	

'value	for	months	yields	a	future	date;	a	negative	value	yields	a	past	date.	

	

On	Error	GoTo	ERROR_LABEL	

	

If	DATE_VAL	=	0	Then	

				DATE_VAL	=	DateSerial(Year(Now),	Month(Now),	Day(Now))	

End	If	

					

EDATE_FUNC	=	DateAdd("m",	months,	DATE_VAL)	

	

Exit	Function	

ERROR_LABEL:	

EDATE_FUNC	=	Err.number	

End	Function	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

47	

'**	

'**	

'FUNCTION						:	COUPDAYBS_FUNC	

'DESCRIPTION			:	RETURNS	THE	NUMBER	OF	DAYS	FROM	PREVIOUS	COUPON	PAYMENT	

'LIBRARY							:	BOND	

'GROUP									:	COUPON	

'ID												:	002	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	COUPDAYBS_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0)	

			

Dim	i	As	Long	

Dim	DATE_VAL	As	Date	

	

On	Error	GoTo	ERROR_LABEL	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

48	

			

If	(FREQUENCY	<	1)	Or	(MATURITY	<=	SETTLEMENT)	Then	

				COUPDAYBS_FUNC	=	0	

				Exit	Function	

End	If	

	

DATE_VAL	=	COUPPCD_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY)	

i	=	COUNT_DAYS_FUNC(DATE_VAL,	SETTLEMENT,	COUNT_BASIS)	

			

COUPDAYBS_FUNC	=	i	

	

Exit	Function	

ERROR_LABEL:	

COUPDAYBS_FUNC	=	Err.number	

End	Function	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

49	

'**	

'**	

'FUNCTION						:	COUPPCD_FUNC	

'DESCRIPTION			:	Calculates	days	from	previous	coupon	date	until	settlement	date	

'LIBRARY							:	BOND	

'GROUP									:	COUPON	

'ID												:	005	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	COUPPCD_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2)	

	

Dim	DATE_VAL	As	Date	

	

On	Error	GoTo	ERROR_LABEL	

	

If	(FREQUENCY	<	1)	Or	(MATURITY	<=	SETTLEMENT)	Then	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

50	

				COUPPCD_FUNC	=	0	

				Exit	Function	

End	If	

			

DATE_VAL	=	COUPNCD_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY)	

COUPPCD_FUNC	=	EDATE_FUNC(DATE_VAL,	-12	/	FREQUENCY)	

	

Exit	Function	

ERROR_LABEL:	

COUPPCD_FUNC	=	Err.number	

End	Function	

	

	

	

	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

51	

'**	

'**	

'FUNCTION						:	COUPNCD_FUNC	

'DESCRIPTION			:	RETURNS	THE	NEXT	COUPON	PAYMENT	DATE	

'LIBRARY							:	BOND	

'GROUP									:	COUPON	

'ID												:	004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	COUPNCD_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2)	

	

Dim	j	As	Long	

	

On	Error	GoTo	ERROR_LABEL	

	

If	(FREQUENCY	<	1)	Or	(MATURITY	<=	SETTLEMENT)	Then	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

52	

				COUPNCD_FUNC	=	0	

				Exit	Function	

End	If	

				

If	MATURITY	=	SETTLEMENT	Then	

		COUPNCD_FUNC	=	MATURITY	

Else	

		j	=	COUPNUM_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY)	-	1	

		COUPNCD_FUNC	=	EDATE_FUNC(MATURITY,	-j	*	(12	/	FREQUENCY))	

End	If	

	

Exit	Function	

ERROR_LABEL:	

COUPNCD_FUNC	=	Err.number	

End	Function	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

53	

'**	

'**	

'FUNCTION						:	COUNT_DAYS_FUNC	

'DESCRIPTION			:	CALCULATE	THE	NUMBER	OF	DAYS	BETWEEN	TWO	DATES	

'LIBRARY							:	DATE	

'GROUP									:	DAYS	

'ID												:	001	

'LAST	UPDATE			:	11	/	02	/	2004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

	

'**	

'**	

	

Function	COUNT_DAYS_FUNC(ByVal	START_DATE	As	Date,	_	

ByVal	END_DATE	As	Date,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0)	

	

Dim	DAY1_VAL	As	Long	

Dim	DAY2_VAL	As	Long	

	

Dim	MONTH1_VAL	As	Long	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

54	

Dim	MONTH2_VAL	As	Long	

	

Dim	YEAR1_VAL	As	Long	

Dim	YEAR2_VAL	As	Long	

	

On	Error	GoTo	ERROR_LABEL	

	

If	START_DATE	=	0	Then:	GoTo	ERROR_LABEL	

If	END_DATE	=	0	Then:	GoTo	ERROR_LABEL	

	

If	END_DATE	<	START_DATE	Then:	GoTo	ERROR_LABEL	

	

If	END_DATE	=	START_DATE	Then	

				COUNT_DAYS_FUNC	=	0	

				Exit	Function	

End	If	

	

If	COUNT_BASIS	=	1	Or	COUNT_BASIS	=	2	Or	COUNT_BASIS	=	3	Then	'Actual	

			COUNT_DAYS_FUNC	=	DateDiff("d",	START_DATE,	END_DATE)	'END_DATE	-	START_DATE	

			Exit	Function	

End	If	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

55	

	

DAY1_VAL	=	Day(START_DATE)	

DAY2_VAL	=	Day(END_DATE)	

	

MONTH1_VAL	=	Month(START_DATE)	

MONTH2_VAL	=	Month(END_DATE)	

	

YEAR1_VAL	=	Year(START_DATE)	

YEAR2_VAL	=	Year(END_DATE)	

	

Select	Case	COUNT_BASIS	

Case	0	'us	(nasd)	30/360	

			If	DAY1_VAL	=	31	Then	DAY1_VAL	=	30	

			If	DAY2_VAL	=	31	And	DAY1_VAL	=	30	Then	DAY2_VAL	=	30	

Case	Else	'4	'Europe	30	

			If	DAY1_VAL	=	31	Then	DAY1_VAL	=	30	

			If	DAY2_VAL	=	31	Then	DAY2_VAL	=	30	

End	Select	

	

COUNT_DAYS_FUNC	=	(YEAR2_VAL	-	YEAR1_VAL)	*	360	+	(MONTH2_VAL	-	MONTH1_VAL)	*	30	+	_	

																		(DAY2_VAL	-	DAY1_VAL)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

56	

	

Exit	Function	

ERROR_LABEL:	

COUNT_DAYS_FUNC	=	Err.number	

End	Function	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

57	

'**	

'**	

'FUNCTION						:	COUPDAYSNC_FUNC	

'DESCRIPTION			:	Calculates	the	time	to	the	next	coupon	payment	in	days	

'LIBRARY							:	BOND	

'GROUP									:	COUPON	

'ID												:	003	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

Function	COUPDAYSNC_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0)	

	

Dim	i	As	Long	

Dim	DATE_VAL	As	Date	

	

On	Error	GoTo	ERROR_LABEL	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

58	

If	(FREQUENCY	<	1)	Or	(MATURITY	<=	SETTLEMENT)	Then	

				COUPDAYSNC_FUNC	=	0	

				Exit	Function	

End	If	

	

DATE_VAL	=	COUPNCD_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY)	

i	=	COUNT_DAYS_FUNC(SETTLEMENT,	DATE_VAL,	COUNT_BASIS)	

					

COUPDAYSNC_FUNC	=	i	

	

'	Calculates	the	time	to	the	next	coupon	payment	in	years	

'YEARS_VAL	=	YEARFRAC_FUNC(SETTLEMENT,	MATURITY,	COUNT_BASIS)	

'FRACTION_VAL	=	(YEARS_VAL	*	FREQUENCY	-	Int(YEARS_VAL	*	FREQUENCY))	/	FREQUENCY	

'	Correction	if	SETTLEMENT	is	ex-COUPON	date	

'If	FRACTION_VAL	=	0	Then:	FRACTION_VAL	=	1	/	FREQUENCY	

'TIME_NEXT_COUPON_FUNC	=	FRACTION_VAL	

	

Exit	Function	

ERROR_LABEL:	

COUPDAYSNC_FUNC	=	Err.number	

End	Function	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

59	

'**	

'**	

'FUNCTION						:	ACCRINT_FUNC	

'DESCRIPTION			:	Returns	the	accrued	interest	of	a	security	that	pays	

'periodic	interest.	

'LIBRARY							:	BOND	

'GROUP									:	PRICE	

'ID												:	002	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	ACCRINT_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

ByVal	COUPON	As	Double,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0)	

					

Dim	j	As	Long	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

60	

Dim	PDAYS_VAL	As	Double	

Dim	NDAYS_VAL	As	Double	

	

Dim	FACTOR_VAL	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

					

If	(MATURITY	<=	SETTLEMENT)	Or	(FREQUENCY	<	1)	Or	(COUPON	<=	0)	Then	

				ACCRINT_FUNC	=	0	

				Exit	Function	

End	If	

		

PDAYS_VAL	=	COUPDAYBS_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY,	COUNT_BASIS)	

NDAYS_VAL	=	COUPDAYSNC_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY,	COUNT_BASIS)	

j	=	PDAYS_VAL	+	NDAYS_VAL	

	

If	j	=	0	Then	

				ACCRINT_FUNC	=	0	

				Exit	Function	

End	If	

		

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

61	

Select	Case	COUNT_BASIS	

Case	0,	4	'US	(NASD)	30/360	;	European	30/360	

				FACTOR_VAL	=	PDAYS_VAL	/	j	

Case	1	'Actual	/	Actual	

				FACTOR_VAL	=	PDAYS_VAL	/	j	

Case	2	'Actual	/	360	

				FACTOR_VAL	=	PDAYS_VAL	/	(360	/	FREQUENCY)	

Case	3	'Actual	/	365	

				FACTOR_VAL	=	PDAYS_VAL	/	(365	/	FREQUENCY)	

End	Select	

		

ACCRINT_FUNC	=	(COUPON	/	FREQUENCY)	*	100	*	FACTOR_VAL							

Exit	Function	

ERROR_LABEL:	

ACCRINT_FUNC	=	PUB_EPSILON	

End	Function	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

62	

'**	

'**	

'FUNCTION						:	BOND_CONVEXITY_DURATION_FUNC		

'DESCRIPTION			:	Returns	the	Macauley	duration	and	Convexity	Table	of	a	bond.	Duration	and	Convexity	are	just	the	weighted	average	of	the	
present	value	of	the	cash	flows	and	is	used	as	a	measure	of	a	bond	price	response	to	changes	in	yield	

'LIBRARY							:	BOND	

'GROUP									:	DURATION	

'ID												:	001	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	BOND_CONVEXITY_DURATION_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

ByVal	COUPON	As	Double,	_	

ByVal	YIELD	As	Double,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	REDEMPTION	As	Double	=	100,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0,	_	

Optional	ByVal	OUTPUT	As	Integer	=	0)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

63	

	

Dim	i	As	Long	

Dim	j	As	Long	

Dim	k	As	Long	

	

Dim	Y_VAL	As	Double	

Dim	T_VAL	As	Double	

Dim	PM_VAL	As	Double	

Dim	DF_VAL	As	Double	

Dim	PV_VAL	As	Double	

	

Dim	PVW_VAL	As	Double	

Dim	DUR_VAL	As	Double	

Dim	CON_VAL	As	Double	

	

Dim	TEMP1_SUM	As	Double	

Dim	TEMP2_SUM	As	Double	

Dim	TEMP3_SUM	As	Double	

	

Dim	TENOR_VECTOR	As	Variant	

Dim	TEMP_MATRIX	As	Variant	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

64	

	

On	Error	GoTo	ERROR_LABEL	

	

If	(MATURITY	<	SETTLEMENT)	Then	

				BOND_CONVEXITY_DURATION_FUNC	=	0	

				Exit	Function	

End	If	

	

k	=	FREQUENCY	

If	k	=	0	Then:	k	=	1	

	

Y_VAL	=	YIELD	

TENOR_VECTOR	=	BOND_DATES_BOND_TENOR_FUNC(SETTLEMENT,	MATURITY,	k,	COUNT_BASIS)	

j	=	UBound(TENOR_VECTOR,	1)	

	

'---	

Select	Case	OUTPUT	

'---	

Case	0	'CONVEXITY	/	MODIFIED	DURATION	/	DURATION	/	BOND	CASH	PRICE	

'---	

				i	=	j:	GoSub	PV_LINE	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

65	

				'-------------------------first	pass	to	calculate	PV	of	coupons-----------------	

				TEMP1_SUM	=	PM_VAL	*	DF_VAL	

				For	i	=	j	-	1	To	1	Step	-1	

								GoSub	PV_LINE	

								TEMP1_SUM	=	PV_VAL	+	TEMP1_SUM	

				Next	i	

				'---------------second	pass	to	calculate	duration	and	convexity	-----------------	

				TEMP2_SUM	=	0:	TEMP3_SUM	=	0	

				For	i	=	j	To	1	Step	-1	

								GoSub	DUR_LINE	

								TEMP2_SUM	=	TEMP2_SUM	+	DUR_VAL	'duration	

								TEMP3_SUM	=	TEMP3_SUM	+	CON_VAL	

				Next	i	

				'Convexity/MDuration/Duration/Bond	Price	

				BOND_CONVEXITY_DURATION_FUNC	=	Array(TEMP3_SUM,	TEMP2_SUM	/	(1	+	(Y_VAL	/	k)),	TEMP2_SUM,	TEMP1_SUM)	

'---	

Case	Else	

'---	

				ReDim	TEMP_MATRIX(0	To	j,	1	To	7)	

				TEMP_MATRIX(0,	1)	=	"TENOR"	

				TEMP_MATRIX(0,	2)	=	"PAYMENTS"	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

66	

				TEMP_MATRIX(0,	3)	=	"DISCOUNT	FACTORS"	

				TEMP_MATRIX(0,	4)	=	"PV	PAYMENTS"	

				TEMP_MATRIX(0,	5)	=	"PV	WEIGHTS"	

				TEMP_MATRIX(0,	6)	=	"DURATION"	

				TEMP_MATRIX(0,	7)	=	"CONVEXITY"	

					

				i	=	j:	GoSub	PV_LINE	

				TEMP_MATRIX(i,	1)	=	T_VAL:	TEMP_MATRIX(i,	2)	=	PM_VAL	

				TEMP_MATRIX(i,	3)	=	DF_VAL:	TEMP_MATRIX(i,	4)	=	PM_VAL	*	DF_VAL	

				'-------------------------first	pass	to	calculate	PV	of	coupons-----------------	

				TEMP1_SUM	=	PM_VAL	*	DF_VAL	

				For	i	=	j	-	1	To	1	Step	-1	

								GoSub	PV_LINE	

								TEMP1_SUM	=	PV_VAL	+	TEMP1_SUM	

								TEMP_MATRIX(i,	1)	=	T_VAL	

								TEMP_MATRIX(i,	2)	=	PM_VAL	

								TEMP_MATRIX(i,	3)	=	DF_VAL	

								TEMP_MATRIX(i,	4)	=	PV_VAL	

				Next	i	

				'---------------second	pass	to	calculate	duration	and	convexity	-----------------	

				For	i	=	j	To	1	Step	-1	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

67	

								GoSub	DUR_LINE	

								TEMP_MATRIX(i,	5)	=	PVW_VAL	

								TEMP_MATRIX(i,	6)	=	DUR_VAL	

								TEMP_MATRIX(i,	7)	=	CON_VAL	'convexity	

				Next	i	

				BOND_CONVEXITY_DURATION_FUNC	=	TEMP_MATRIX	

'---	

End	Select	

'---	

	

'epsilon	=	YIELD	*	0.01	

'P1_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD	-	epsilon,	FREQUENCY,	REDEMPTION,	COUNT_BASIS)	

'P2_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD,	FREQUENCY,	REDEMPTION,	COUNT_BASIS)	

'P3_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD	+	epsilon,	FREQUENCY,	REDEMPTION,	COUNT_BASIS)	

'P4_VAL	=	(P3_VAL	+	P1_VAL	-	2	*	P2_VAL)	/	(epsilon	*	epsilon)	

	

'BOND_CONVEXITY_FUNC	=	P4_VAL	/	P2_VAL	

	

'P1_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD	-	epsilon,	FREQUENCY,	REDEMPTION,	COUNT_BASIS)	

'P2_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD,	FREQUENCY,	COUNT_BASIS,	REDEMPTION)	

'P3_VAL	=	BOND_CASH_PRICE_FUNC(SETTLEMENT,	MATURITY,	COUPON,	YIELD	+	epsilon,	FREQUENCY,	REDEMPTION,	COUNT_BASIS)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

68	

'P4_VAL	=	(P3_VAL	-	P1_VAL)	/	(2	*	epsilon)	

	

'BOND_DURATION_FUNC	=	-P4_VAL	/	P2_VAL	

	

Exit	Function	

'---	

PV_LINE:	

'---	

				T_VAL	=	TENOR_VECTOR(i,	1)	

				PM_VAL	=	(COUPON	/	k)	*	100	+	IIf(i	=	j,	REDEMPTION,	0)	'PAYMENT	

				DF_VAL	=	1	/	(1	+	Y_VAL	/	k)	^	(k	*	T_VAL)	'DISC_FACTOR	

				PV_VAL	=	PM_VAL	*	DF_VAL	'PV	OF	PAYMENTS	

'---	

Return	

'---	

DUR_LINE:	

'---	

				GoSub	PV_LINE	

				PVW_VAL	=	PV_VAL	/	TEMP1_SUM	

				DUR_VAL	=	PVW_VAL	*	T_VAL	

				CON_VAL	=	T_VAL	*	((1	/	k)	+	T_VAL)	*	PM_VAL	*	DF_VAL	/	(TEMP1_SUM	*	(1	+	Y_VAL	/	(k))	^	k)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

69	

'---	

Return	

'---	

ERROR_LABEL:	

BOND_CONVEXITY_DURATION_FUNC	=	Err.number	

End	Function	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

70	

'**	

'**	

'FUNCTION						:	BOND_DATES_BOND_TENOR_FUNC	

'DESCRIPTION			:	FROM	DATES	TO	TENOR	

'LIBRARY							:	FI_BOND	

'GROUP									:	TENOR	

'ID												:	001	

'LAST	UPDATE			:	11	/	02	/	2004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'**	

'**	

	

Function	BOND_DATES_BOND_TENOR_FUNC(ByVal	SETTLEMENT	As	Date,	_	

ByVal	MATURITY	As	Date,	_	

Optional	ByVal	FREQUENCY	As	Integer	=	2,	_	

Optional	ByVal	COUNT_BASIS	As	Integer	=	0)	

	

'TENOR_RNG	-->	Maturity	time	vector	in	years	

					

Dim	i	As	Long	

Dim	j	As	Long	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

71	

					

Dim	NSIZE	As	Long	

Dim	PDAYS_VAL	As	Long	

Dim	NDAYS_VAL	As	Long	

					

Dim	TEMP_MULT	As	Double	

Dim	TEMP_FACTOR	As	Double	

Dim	TEMP_VECTOR	As	Variant	

	

On	Error	GoTo	ERROR_LABEL	

	

If	(FREQUENCY	<	1)	Then	

				BOND_DATES_BOND_TENOR_FUNC	=	0	

				Exit	Function	

End	If	

	

If	(MATURITY	<	SETTLEMENT)	Then	

				BOND_DATES_BOND_TENOR_FUNC	=	0	

				Exit	Function	

End	If	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

72	

If	(SETTLEMENT	=	MATURITY)	Then	

				ReDim	TEMP_VECTOR(1	To	1,	1	To	1)	

				TEMP_VECTOR(1,	1)	=	MATURITY	

				BOND_DATES_BOND_TENOR_FUNC	=	TEMP_VECTOR	

				Exit	Function	

End	If	

		

PDAYS_VAL	=	COUPDAYBS_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY,	COUNT_BASIS)	

NDAYS_VAL	=	COUPDAYSNC_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY,	COUNT_BASIS)	

NSIZE	=	PDAYS_VAL	+	NDAYS_VAL	

	

Select	Case	COUNT_BASIS	

Case	0,	4	'US	(NASD)	30/360	;	European	30/360	

				TEMP_FACTOR	=	PDAYS_VAL	/	NSIZE	

Case	1	'Actual	/	Actual	

				TEMP_FACTOR	=	PDAYS_VAL	/	NSIZE	

Case	2	'Actual	/	360	

				TEMP_MULT	=	NSIZE	/	(360	/	FREQUENCY)	

				TEMP_FACTOR	=	PDAYS_VAL	/	NSIZE	*	TEMP_MULT	

Case	3	'Actual	/	365	

				TEMP_MULT	=	NSIZE	/	(365	/	FREQUENCY)	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

73	

				TEMP_FACTOR	=	PDAYS_VAL	/	NSIZE	*	TEMP_MULT	

End	Select	

	

j	=	COUPNUM_FUNC(SETTLEMENT,	MATURITY,	FREQUENCY)	

	

ReDim	TEMP_VECTOR(1	To	j,	1	To	1)	

	

TEMP_VECTOR(1,	1)	=	(1	/	FREQUENCY)	-	(TEMP_FACTOR	/	FREQUENCY)	

For	i	=	2	To	j	

				TEMP_VECTOR(i,	1)	=	TEMP_VECTOR(i	-	1,	1)	+	(1	/	FREQUENCY)	

Next	i	

				

BOND_DATES_BOND_TENOR_FUNC	=	TEMP_VECTOR	

	

Exit	Function	

ERROR_LABEL:	

BOND_DATES_BOND_TENOR_FUNC	=	Err.number	

End	Function	

	

	

	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

74	

'**	

'**	

'FUNCTION						:	DELTA_DURATION_PRICE_FUNC	

'DESCRIPTION			:	DURATION	ADJUSTMENT	

'LIBRARY							:	BOND	

'GROUP									:	DURATION	

'ID												:	004	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

Function	DELTA_DURATION_PRICE_FUNC(ByVal	MDURATION_VAL	As	Double,	_	

ByVal	YIELD1_VAL	As	Double,	_	

ByVal	YIELD0_VAL	As	Double)	

On	Error	GoTo	ERROR_LABEL	

					

DELTA_DURATION_PRICE_FUNC	=	-MDURATION_VAL	*	(YIELD1_VAL	-	YIELD0_VAL)	

Exit	Function	

ERROR_LABEL:	

DELTA_DURATION_PRICE_FUNC	=	Err.number	

End	Function	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

75	

'**	

'**	

'FUNCTION						:	DELTA_CONVEXITY_PRICE_FUNC	

'DESCRIPTION			:	CONVEXITY	ADJUSTMENT;	Remember	the	convexity	adjustment	gets	

'us	much	closer	to	the	actual	value	than	does	the	Duration	predicted	price.	

'LIBRARY							:	BOND	

'GROUP									:	DURATION	

'ID												:	003	

'AUTHOR								:	RAFAEL	NICOLAS	FERMIN	COTA	

'LAST	UPDATE			:	21/01/2009	

'**	

'**	

	

Function	DELTA_CONVEXITY_PRICE_FUNC(ByVal	CONVEXITY_VAL	As	Double,	_	

ByVal	MDURATION_VAL	As	Double,	_	

ByVal	YIELD1_VAL	As	Double,	_	

ByVal	YIELD0_VAL	As	Double)	

	

Dim	ADJ_VAL	As	Double	

	

On	Error	GoTo	ERROR_LABEL	

YEILD	SENSITIVITY	FUNC	function	Technical	Report		 	 	
	

76	

ADJ_VAL	=	0.5	*	CONVEXITY_VAL	*	((YIELD1_VAL	-	YIELD0_VAL)	^	2)	

DELTA_CONVEXITY_PRICE_FUNC	=	ADJ_VAL	+	DELTA_DURATION_PRICE_FUNC(MDURATION_VAL,	YIELD1_VAL,	YIELD0_VAL)	

	

Exit	Function	

ERROR_LABEL:	

DELTA_CONVEXITY_PRICE_FUNC	=	Err.number	

End	Function	

	

