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About this tutorial 
 
 
OPTIMIZ.XLA 
OPTIMIZ for Microsoft EXCEL contains macros to perform the optimization of 
multivariable functions. This add-in contains also several routines for nonlinear 
regression and nonlinear equation solving, the important tasks, strictly related to the 
optimization one.  
 
Except in linear cases, optimization proceeds by iterations. Starting from an 
approximate trial solution an algorithm will gradually refine the working estimate until a 
prefixed precision has been reached. In this add-in you can find a few algorithms 
covering different kind of optimization problems. All of them are realized by Excel 
macros and can be activated from the menu:   "Tools  ⇒ Optimiz ..." 
They work "on-site". It means that the macros work directly on the cells of your 
worksheet where you have defined the function to optimize. They have been 
developed mainly with the aim of teaching the most popular optimization algorithms 
and their related methods. But, of course, they are also useful in practical real 
problems of low-moderate dimension. 
 
Algorithms covered by this tool are: Nelder-Mead Downhill-Simplex, Newton-Raphson, 
Levenberg-Marquadt least squared fitting, Conjugate-Gradient, Davidon-Fletcher-
Powell, Broyden, Brown, Montecarlo, etc. 
 
The main purpose of this document is to show how to work with the Optimiz.xla add-in for 
solving non-linear regression and optimization problems. Of course this speaks about 
math, statistic and numeric calculus but this is not a math or a statistic book.  Therefore, 
you will rarely find theorems and demonstrations. You will find, on the contrary, many 
examples that explain, step by step, how to reach the result that you need, straight and 
easy. And, of course, we speak about Microsoft Excel but this is not a tutorial on Excel. 
Tips and tricks for general applications in Excel can be found at many internet sites.  

 
I am grateful to all those who will provide constructive criticisms. 
 
Leonardo Volpi 
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Optimiz.xla installation 
The OPTIMIZ add-in for Excel 2000/XP  is a zip file composed of two files: 

• OPTIMIZ.XLA Excel add-in file 
• OPTIMIZ.HLP Help file 

 
It is available as a download from the website 
http://digilander.libero.it/foxes/SoftwareDownload.htm,  

under the title “Didactic Optimization Tool for EXCEL” as “Optimiz tool.zip” in blue. 
 
How to install 
Unzip and place all the above files in a directory that is accessible by Excel. The best 
choice is in the Add-ins directory which is in the following sequence 

Local Disk (C: or something else) 

 Documents & Settings 

  (Your name, which is a directory that comes up on startup) 

   Application Data 

    Microsoft 

     Addins. 

When loaded/saved, the add-in is contained entirely in this directory. Your system is not 
modified in any other way. If you want to uninstall this package, simply delete the 
designated files - it's as simple as that!.  

To install in Excel as a menu item, follow the usual procedure for installing a “*.xla” add-in 
to the main menu. 

1) Open Excel 

2) From the Excel menu toolbar select "Tools" and then select "Add-ins". 

3) If “optimization tool” does not appear in the list, Optimize.xla has not been linked in, 
Select the Browse box on the right side of the list, and the above Addins directory will 
appear. (If you loaded it into some other place, you will have to search for it.) Select 
optimize.xla. 

4) Once in the Add-ins Manager list, look in the list  for “optimization tool” and select it 

5) Click OK  

 
After the first installation, OPTIMIZ.xla1 will be added to the Add-in list manager as 
‘optimization tool’. Your Addin Manager list will appear differently from the one shown 
below (on the left side). The lists will be different depending on which foreign language 
version of Excel you are  using and what other tools you are using. When Excel starts, all 
add-ins checked in the Add-ins Manager will be automatically loaded. If you want to stop 
the automatic loading of OPTIMIZ.xla, simply deselect the check box next to “optimization 
tool” before closing Excel. 
 

                                                      
1 This tutorial has been written for users of the English version of Excel The illustrations of the 
appearance of Excel when Optimize.xla is used are from the Italian version of Excel. These 
illustrations were not changed, since the version used by the author and the Foxes team is the Italian 
version.  
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If the installation is correct,, you should see the welcome popup of OPTIMIZ.xla. This 
appears only when you select "on" the check box of the Addin Manager. When Excel 
automatically loads OPTIMIZ.xla, this popup remains hidden. 
 
 
How to uninstall 
This package never alters your system files 

If you want to uninstall this package, simply delete the file. Once you have cancelled the 
OPTIMIZ.xla file, to remove the corresponding entry in the Addin Manager list, follow these 
steps: 

1) Open Excel 

2) Select <Addins...> from the <Tools> menu. 

3) Once in the Addins Manager, click on ‘optimization tool’. 

4) Excel will inform you that the addin is missing and ask you if you want to remove it 
from the list. Select  "yes".  
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Optimization 
Optimization 
Optimization "on site" 
Optimiz was developed for performing the optimization task directly on a worksheet. 
This means that you can define any relationship that you want to optimize, simply by 
using the standard Excel built-in functions and your equations that relate them.  The 
optimization macros will update directly the cells containing the parameters to be 
changed and the related variables to be optimized. 
 
Object function. For example: if you want to search for the minimum of the bi-
dimensional function  
 

( ) ( )2100
352

100
51),( −+−= yxyxf

, 
 
you insert in the cell E4 the formula  "=(B4-0.51)^2+(C4-0.35)^2". Here the cells B4 
and C4 contain the current values of the variables x and y. By changing the values of 
B4 or C4, the function value E4 is also consequently changed.  
 

 
 
 
Gradient. Some optimization algorithms require the gradient of the function, which is 
the derivative with respect to each independent variable. In that case you must insert 
also the gradient formulas. 
 
In our simple case we have for the gradient: 
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Constraints. Usually constrained variables have simple bounding constraints (for 
example, as follows):  
 

11     ,      11 <<−<<− yx  
 
On the worksheet these constraints are arranged in a rectangular range (2 x n) where 
the first row contains the lower limits and the second row the upper limits. 
 

 
 
 
Doing an optimization using worksheet cells and cell equations is slower than by doing 
it with VBA subroutines that use the worksheet only for the input data and output 
parameters. The former method gives considerable flexibility, but is prone to errors. 
The latter method is inflexible, but errors are much reduced 
 
 
Optimization strategy 
In numerical analysis the optimization of a function is not a trivial task and there is no 
single algorithm good for all cases. Each time it is to be done, we have to study the 
problem to establish an optimization strategy by choosing: 
: 

• The most adapt algorithm 

• The most adapt starting point 

 
The algorithm depends strongly on the characteristics of the function that we have to 
optimize. The choosing of the starting point depends on the local behavior near the 
"optimum" of the function itself.  
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Optimization algorithms 
The best optimization algorithm, good for every case, is unknown, and this should be 
obvious.  However,  there are several good algorithms adapted for large cases of 
practical common optimization problems, from which one can be selected. 
 
Generally speaking we have to choose between algorithms that use derivatives 
(Gradient) and those that do not. In general, methods that use derivatives are the 
more powerful and accurate. However, the increase in speed does not always 
outweigh the extra overhead in computing the derivatives. Sometime, it is also 
impossible or impractical to calculate exactly the derivatives . There are also cases in 
which the derivative information is useless. This happens for discontinuous or quasi-
discontinuous functions.  
 

 
 
here, methods with gradient are better 

 
 
here, methods without gradient are better 

 
 
Also, the local behavior near the optimum can favor one type of algorithm instead of 
others. It happens for example, when there is a narrow extreme point near other local 
extremes or, at the opposite, when the function has a large flat "valley".  
 

 
 
 
Here, methods with gradients are more 
efficient.  

 
 
Here, methods without gradients are able to 
arrive at a global optimum and not hang-up at 
a local optimum. 
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Algorithms Implemented In This Addin 
 
Downhill-Simplex  
The Nelder–Mead downhill simplex algorithm is a popular derivative-free 
optimization method. It is based on the idea of function comparisons among a 
simplex of N + 1 points. Depending on the function values, the simplex is 
reflected or shrunk away from the maximum point. Although there are no 
theoretical results on the convergence of the algorithm, it works very well on 
a wide range of practical problems. It is a good choice when a one-optimum 
solution is wanted with minimum programming effort. It can also be used to 
minimize functions that are not differentiable, or that we cannot differentiate. 
It shows a very robust behavior and converges over a very large set of 
starting points. In our experience it is the best general purpose algorithm; 
solid as a rock. It's a "jack of all trades”. 
 

 
 

Random 
This is another derivative-free algorithm. It simply "shoots" a set of random 
points and takes the best extreme value (max or min). Usually the accuracy 
is not comparable with the other algorithms (only about 5%), and it also 
requires a considerable extra effort and time. On the other hand, it's 
absolutely insensitive to the presence of unwanted local extremes, and works 
with smooth and discontinues functions as well. In this implementation, the 
random algorithm can increase the accuracy (0.01%) by a "resizing" strategy 
(under particular conditions of the objective function). On the contrary, this 
algorithm is not adaptable for functions that have a large "flat" region near the 
extreme, like what happens in the least squared optimization. Convergence 
problems do not exist because a starting point is not necessary 
 

 

Divide-Conquer 1D 
For univariate functions only. It's another very robust, derivative free 
algorithm. It is simply a modified version of the bisection algorithm. It can be 
adapted to every function, smooth or discontinuous. It converges over a very 
large segment of parameter space. 
 

 

Parabolic 1D 
For univariate functions only.  This algorithm uses a parabolic interpolation to 
find any local extreme (maximum or minimum). It is very efficient and fast 
with smooth-derivable functions. The starting point is simply a segment of 
parameter space bracketing the extreme (local or not) that we want to find. 
The condition is that the extreme must be within the stated segment. 
 

 

Conjugate Gradients 
Also called CG. This is a very popular algorithm that cannot miss. It requires 
a gradient evaluation at each step which can be approximated internally by 
the finite difference method or supplied directly by the user as well. The exact 
gradient information improves the accuracy of the final result, but in many 
case these differences are not relevant to the extra effort. The starting point 
should be chosen sufficiently close to the optimized one. 
 

 

Davidon-Fletcher-Powell 
Also know as DFP algorithm. This is a sophisticated and efficient method for 
finding extremes of smooth-regular functions. It requires a gradient evaluation 
at each step which can be approximated internally by the finite difference 
method or supplied directly by the user as well. The exact gradient 
information improves the accuracy of the final result, but in many case these 
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differences are not relevant to the extra effort. The starting point should be 
chosen sufficiently close to the optimized one, even if the region is larger 
than the allowable region for a CG solution. 
 
Newton-Raphson 
The most popular algorithm for solving nonlinear equations. It needs the 
exact gradient for approximating the Hessian matrix. It is extremely fast and 
accurate but, because of its poor global convergence performance, it is used 
only for refining the final result from another algorithm. 
 

 

Levenber-Marquardt 
Levenberg-Marquardt is a popular alternative to the Gauss-Newton method 
of finding the minimum of a function that is a sum of squares of nonlinear 
functions. This algorithm was found to be an efficient, fast and robust method 
which also has a good global convergence property. For these reasons, It 
has been incorporated into many good commercial packages performing 
non-linear regression. Finding this algorithm on public domain is not very 
easy. 
. 

 

 
 
The starting point 
Almost all optimization algorithms require a starting point. It is a set of initial values of 
the independent variables from which the algorithm begins its searching. A "good" 
starting point is very important to obtain a good optimization result. Sometime the 
convergence fails; sometime the algorithm converges to a local minimum or a local 
maximum, which in general, is not the optimum. Many times these traps can be 
avoided by  choosing an "adapt" type of starting point. 
 
How can we choose a "good" starting point?  We have to say that this is the key of any 
optimization problem. 
 
Before starting the optimization, we have to study the objective function, acquiring as 
much information as possible about the function itself and, if possible, also about its 
derivatives. We have to guess how the function grows or decays and where the 
locations are (if any) of the "valleys" and "mountains" of the function itself. 
 
The most solid method for this, is function plotting. For one-dimensional functions f(x) 
we simply plot the function itself. Choosing an adapt scale factor and a zoom window 
we are sure to bracket the location of the desired minimum and maximum. 
 

 
 

 
 
For two-dimensional functions f(x, y) we can plot the contour-lines for several 
different function values.  
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Example of contour-lines plots 
 

 

 
We can also plot a 3D graph but it is less useful, in our opinion, then the contour-lines 
method. Anyways, there are lots of good programs, also freeware that perform this 
task. 
An example of good 3D plots 
 

 
If you like, with a little patience, you can construct a similar graph also in Excel. 
Alternatively you can download the freeware workbook Random_Plot.xls from our 
website that just creates automatically a 3D plot and a contours plot of two-
dimensional functions. 
Example of the graph obtained with Random_Plot.xls 
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This example shows that the starting point for searching the function minimum should 
be taken in the half triangular domain where the hole is located. On the contrary, it 
would be inefficient to start with a point located behind the big mountain. Simply, 
imagine a little ball rolling along the surface. Where from, do you think it can quickly 
fall into the hole? 
 
For functions having more than 2 dimensions, the difficulty increases sharply because 
we cannot use the plot method as it is. We have to plot the graphs of several function 
sections. We keep fixed a variable (for example z) to one value (for example 1) and 
then plot the function f(x, y, 1) as a contour lines plot. This plot is a section (or "slice") 
at z = 1 of the function f(x, y, z). Repeating for several values of z with can map the 
behavior of the entire function 
 
Optimization Macros 
According to the didactic intention of this add-in, the macros are named with the 
algorithm's name instead with the usual scope or action of the macros themselves 
We could say that the scope is always the same: finding the optimized point of a given 
function. What mainly differentiates each macro is its action field. For example the 
Levenberg-Marquardt algorithm is generally the most adapt for the nonlinear least 
squared fitting; but many times we can see that the Downhill-Simplex algorithm is 
competitive. The Downhill-Simplex algorithm is sometimes superior, due to its robust 
global convergence property. In other words: "there is no any fixed situation" and each 
problem must be always studied before attempting to find the optimum. 
 
Derivatives (Gradient) 
A primary decision is the choice between algorithms using derivatives or algorithms 
without derivatives. One thinks that the second choice is automatic when the derivative 
is unknown or too hard to calculate. The second choice is not always a valid choice, 
because the algorithms could easily approximate internally the derivatives with 
sufficiently accuracy. 
 
The reason why the primary decision about derivatives is deeper comes from the basic 
nature of the function. When we adopt to algorithm that uses the gradient we should 
be sure that this information is valid and will remain valid in the working domain of the 
function. This happens not for all functions. Analytical, smooth, functions like 
polynomials and exponentials fulfill this rule; and also rational, power and logarithmic 
functions when the domain does not include singularity. Using derivatives can greatly 
improve both accuracy and convergence speed. So, in general, algorithms that use 
derivatives are very fast. 
 

  
 
There are cases, on the contrary, where derivative information is not useful or will 
even hinder the convergence. This happens for discontinuous functions or for 
discontinuous derivatives. In these cases is better to ignore the derivative information. 
Another case happens when the function has many local extremes near the optimum 
one; in this case, following the derivative information, the algorithm might fall into one 
of the "traps" of local extremes. 
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Optimization Macros with Derivatives 
Those macros need information about: 

1. The cell containing the definition (computed result) of the function to optimize 
(objective function) 

2. The range of the cells containing the values (variables) to be changed (max 9 
variables) 

3. The range containing the constraints (minimum and maximum limits) on the 
variables (constraints box) 

4. Optionally the range of the values of the computed gradient functions, one for 
each variable. 

 
The locations of the cells within each of these ranges must be consistent with the 
specific variables, so that there is a direct, unambiguous link to all the required 
information about each variable. If the arrangement on the worksheet mixes up the 
relationships, then the computation may fail or be entirely wrong. 
 

 
 
The Input Menu Box: 
 

1. Select ‘Tools’ from the uppermost Excel  menu list 

2. Select the ‘f(x) optimization’ line 

3. Another box will appear. Select the desired method. 

4. For the ‘Conjugate-Gradient’ method, the following data entry box will appear. 
The other methods have similar data input boxes. 
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Maximum or Minimum  Selection:  The two buttons in the upper right of the menu 
box switch between the minimization and maximization algorithms 
 
Gradient: If the gradient formulas are provided (the range entered) the macro will use 
them for its internal calculations. Otherwise the derivatives are approximated internally 
by the finite difference central formulas. 
 
Newton-Raphson Option: If checked, the macro will attempt to refine the final result 
with 2-3 extra iterations of the Newton-Raphson algorithm. This option always requires 
the gradient formulas, for evaluating the Hessian matrix with sufficient accuracy to 
obtain a good optimum value. It is a numerical problem, inherent in the loss of 
accuracies of the differences obtained by numerical subtractions. 
 
Stopping Limit. In each panel there is always an input box for setting the maximum 
number of iterations or the maximum number of  evaluation points allowed. The macro 
stops itself when this limit has been reached. 
 
Relative Error Limit: In the "Random" macro there is also an input box for setting the 
relative error limit. The other algorithms do not use the error criterion, they simply stop 
when the accuracy does not increase anymore after several iterations. 
 
 
Optimization Macros without Derivatives 
Those macros need information only about: 

1. The cell containing the definition (computed result) of the function to optimize 
(objective function) 

2. The range of the cells containing the values (variables) to be changed (max 9 
variables) 

3. The range containing the constraints (minimum and maximum limits) on the 
variables (constraints box) 

 
The locations of the cells within each of these ranges must be consistent with the 
specific variables, so that there is a direct, unambiguous link to the specific constraint. 



 

 17 

If the arrangement on the worksheet mixes up the relationships, then the computation 
may fail or be entirely wrong. 
 

 
 
Maximum or Minimum  Selection:  The two buttons in the upper right of the menu 
box switch between the minimization and maximization algorithms 
 
Stopping Limit. In each panel there is always an input box (Points) for setting the 
maximum number of iterations or the maximum number of evaluation points allowed. 
The macro stops itself when this limit has been reached. 
 
Relative Error Limit: In the "Random" macro there is also an input box for setting the 
relative error limit. The other algorithms do not use the error criterion, they simply stop 
when the accuracy does not increase anymore after several iterations. 
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Examples Of Uni-variate Functions 

Example 1 (Smooth function) 
The search for an extreme in a uni-variate smooth function is quite simple and almost 
all algorithms usually work. We have only to plot the function to locate immediately the 
extreme.  
 
Assume for example, a problem of finding a local maximum and minimum of the 
following function in the range 0 < x < 10 

21
)sin()(
x
xxf

+
=

 
 
The plot below shows that there are three local extreme points within the range of 0 to 
10. 
 

 
 

Interval Extreme 
0 < x < 2 local max that is also the absolute max 

2 < x < 6 local min that is also the absolute min 

6 < x < 10 local max 
 
In order to approximate the extreme points we can use the parabolic interpolation 
macro. This algorithm converges to the extreme within each specified interval, no 
matter if it is a maximum or a minimum.  
 
A possible worksheet arrangement may be the following where the range A3:B3 is the 
constrain box, the cell C3 is the variable to change, and the cell D3 contains the 
function  
 

 
 
Repeating the search for each interval we find 
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a b x f(x) 
0 2 1.109293102 0.599522164
2 6 4.503864793 -0.21205764 
6 10 7.727383943 0.127312641

 
If we want to find the absolute maximum or minimum within a given interval we must 
use the divide-and-conquer algorithm (a variant of the bisection algorithm) 
 

 
 
 
Example 2 (Many local minima) 
An optimization algorithm may give a wrong result when there are too many local 
extremes (minimum and maximum) near the desired absolute maximum or minimum. 
In that case they can be trapped into one of the local extremes. 
 
For example assume to have to find the maximum and minimum of the following 
function within the range, 0 < x < 5 

)6cos()( xexxf x ⋅⋅= −
 

 
In the range 0 < x < 5 there are 
many local minimum and 
maximum points. We could 
bracket the absolute maximum 
within a small interval before 
starting the searching algorithm. 
But we want to show the evidence 
that the Divide-and-Conquer 
algorithm, (thanks to its 
intrinsically robustness) can 
escape the local "traps" and give 
the correct absolute max and min 
 
 
Starting the macro "1D Divide and Conquer" 
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 a b x f(x) 
max 0 5 1.0459 0.367 
min 0 5 1.5608 -0.327 

 
As we can see the algorithm ignores the other local extremes and converges to the 
true absolute maximum. But of course this is a didactic extreme case. Generally 
speaking, it is always better to isolate the desired extreme within a sufficiently close 
segment before attempting to find the absolute maximum (minimum). If it's impossible 
and there are many local extremes, you may increase the number of points limit from 
600 (default) to 1000 or 2000. 
 
Example 3 (The saw-ramp) 
 
This example illustrates a case quite difficult for 
many optimization algorithms, even if it is quite 
simple to find the maximum and minimum by 
inspection of a plot of the function. 
 
Assume we have to search the maximum and 
minimum for a function shown in the plot, in the 
range 0 < x < 4 
Its analytical expression, quite complicated, is: 
 

( ) 1|int|4||)( 2
1 +−+⋅+= xxxxf  

  
 
The optimization macro will converge to the point (0, 1) for the minimum and to (3.5, 
6.5) for the maximum 
 

 
 
 
Example 4 (Stiff function) 
This example shows another difficult function. The concept of stiff functions is similar 
to the differential equation problem: We are speaking of stiff problems when the 
function evolves smoothly and slowly in a large interval except in one or more small 
intervals where the evolution is more rapid. Usually this kind of function needs two or 
more plots with different scales. 
 
Given the following function for x ≥ 0 , find the absolute max and min 
 

( )
21

sin)(
x
xxf

+
=

 
 
For a good study, this function requires two plots 
 



 

 21 

 
One plot covers the wide range 0 < x < 100 and another covers the smaller region  
0 < x < 10 where the function shows a narrow maximum. (Note that there are other 
local extremes within the global interval.) The absolute minimum is located within the 
interval 10 < x < 30. 
 
For finding the maximum and minimum with the best accuracy, we can use the divide-
and-conquer algorithm (robust convergence), obtaining the following result: 
 

a b x f(x) rel.error 
0 100 18.2845204 -0.049492601 6.97E-09 
0 100 0.760360454 0.6094426 2.23E-08 

 
 
Note that the parabolic algorithm has some convergence difficulty in finding the 
maximum near 0, if the interval is not sufficiently close to zero. On the contrary, there 
is no problem for the minimum 
 

a b x f(x) rel.error 
0 3 6.869565509 0.07165213 6.11E+00 
0 2 -1.668589413 #NUM! - 

0.5 1.5 0.760360472 0.6094426 2.72E-10 
10 30 18.28452054 -0.04949260 1.00E-09 

 
This behavior for the ranges near zero, can be explained by observing that the 
function does not have a derivative value at x = 0. The derivative is: 
 

( ) ( ) ( )
( )32

32

12

sin2cos1)('
xx

xxxxxf
+⋅

−+
=

 
 
which at x=0 is infinite. 
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Example 5 (The orbits) 
The objective function also can have an indirect link to the parameter that we have to 
change. This is illustrated in the following example: 
 
Two satellites follow two plane elliptic orbits described by the following parametric 
equations with respect to the earth. 
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For time t = 0 the two satellites stay at 
positions (2, −1),  (1, 0) respectively 
 

 
 
We want to find when the two satellites have a minimum distance from each other (In 
order to transmit messages with the lowest noise possible).  We want to also find the 
position of each satellite at the minimum distance. (Note that, in general, this position 
does not coincide with the static minimum distance between the orbits.) 
 
This problem can be regarded as a minimization problem having one parameter (the 
time "t") and one objective function (the distance "d") 
 
The distance on a plane between two points is 

( ) ( )221
2

21 yyxxd −+−=  
 
We can solve this problem directly on a worksheet as shown in this example. 
 

 
 
Range B4:C5: The x and y coordinates of the two satellites at a given time. 
Range E4:  Parameter to change (time) 
Range F4:  Distance (objective function to be minimized) 
Range E7:F7: Constraints on the time parameter t. 
 
First of all we note that both orbits are periodic of the same period T = π ≅ 6.28 
So we can study the problem for 0 < t < 6.28 
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Note that when you change the parameter "t" , for example giving a set of sequential  
values (0, 1, 2, 3, 4, 5) we get immediately the orbit coordinates in the range B4:C5 
If we plot in Excel these coordinates we have the following interesting pictures that 
simulate the motion. 
 

  

 
 
We observe that the condition of "minimum distance" happens two times: in the 
intervals (0, 3) and (3, 6).  
 
Starting the macro "1D-divide and Conquer" with the following constrain conditions: 
(tmin = 0, tmax = 3) and (tmin = 3, tmax = 6.28), returns the following values. 
 

Constraints     SAT 1 SAT 2 
t min t max time distance x y x y 

0 3 0.231824 1.236068 2.635757 -0.05424 1.432755 0.229753

3 6.28 3.373416 1.236068 -2.63576 0.054237 -1.43275 -0.22975
 
 
Can we use also the Downhill-Simplex algorithm? Of course yes. Because the Simplex 
uses the starting point information, we can use it for finding the nearest minimum. 
 
Starting the macro "Downhill-Simplex" with the starting points: (t = 0) gives the same 
values shown in the first line of the above table. Starting with (t = 3), gives the same 
values shown in the second line. 
 
Improving accuracy 
The optimum values of the parameter "t" was calculated with a good accuracy of about 
1E-8. If we want to improve the accuracy we may try to use the parabolic algorithm. 
However with the parabolic algorithm on this application, we have to pay attention to 
bracketing the minimum in a narrow interval about the desired minimum point. For 
example we can use the segment 0 < t < 0.3 for the first minimum and 3 < t < 3.5 for 
the second one.  
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Constraints     
t min t max time error 

0 0.3 0.231823805 7.074E-12 

3 3.5 3.373416458 1.934E-12 
 
The final values are accurate better than 1E-11 
 
Examples of bi-variate functions 

Example 1 (Peak and Pit) 
Assume the minimum of the following function is to be found: 
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The 3D plot of is shown on page 14 above under "The starting point" of the previous 
chapter. In the plot we clearly observe the presence of a maximum and a minimum in 
the domain 

−2.5 < x < 2.5    ,    −2.5 < y < 2.5 
 
The maximum is located in the area { x, y | x>0 , y>0 } and the minimum is located in 
the area { x, y | x<0 , y<0 }. The point (0, 0) is at the middle of the maximum and 
minimum points so we can use it as starting point for both searches. 
 
Select the cell D3 of the objective 
function to minimize and start the 
Downhill-Simplex algorithm. If you 
select the "min" bottom the macro 
will search for the minimum point 
(-1.055968429 -1.055968361) 
 

If you select the "max" bottom, the 
macro will find the symmetric point 
(1.055968429 1.055968361) 
 
The accuracy will be about 1E-8 . 

 
 
If we repeat the same searching with other algorithms we find 
 

Algorithm Accuracy Time 
Downhill-Simplex 1E-8 1 sec 
CG (with approximate derivatives) 1E-9 3 sec 
DFP (with approximate derivatives) 1E-9 4 sec 
Random 1E-5 11 sec 
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Example 2 (Parabolic surface) 
Assume the minimum of the following function is to be found: 

483612842),( 22 +−−++= yxyxyxyxf  
 
The contour-lines plot looks like the following: 
 

 
 
We see that the minimum is located in the region 0 < x < 2, 0 < y < 4. 
Because the gradient is simple, we can also insert the derivative formulas 

( )36164  ,  1244 −+−+=∇ yxyxf  
 

 
 
Repeating the minimum search we find the point (1, 2) with the following accuracy 
 

Algorithm Accuracy Time 
Downhill-Simplex 2E-8 1 sec 
CG (with approximate derivatives) 5E-7 4 sec 
DFP (with approximate derivatives) 2E-8 5 sec 
CG  (with exact derivatives) 5E-7 3 sec 
DFP (with exact derivatives) 2E-8 4 sec 
CG + NR (with exact derivatives) 0 3 sec 
DFP+ NR (with exact derivatives) 0 4 sec 
Random 2E-5 12 sec 

 
 
As we can see, for smooth functions like polynomials, the exact derivatives are useful, 
since with the Newton-Raphson (NR) final step, the global accuracy of the solution can 
be improved. 
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Example 3 (Super parabolic surface) 
This example shows another case in which the optimization algorithms that do not 
require external derivative equations are sometimes superior to those that require 
external derivative equations. 
 
Assume the minimum of the following function is to be found: 
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Take its gradient 
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It has multiple zeros for the derivatives. 
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Note that the last root of the second gradient has a multiplicity of 3. This means that it 
is a root also for the 2nd derivative df/dy. 
 
Let's see the Hessian matrix of the second derivative. 
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At the point (0.3, 0.5) the determinant of H is zero. This condition reduces the 
efficiency of those algorithms that use the derivative information like the Newton or 
quasi-Newton methods. 
 
Let's see how they work practically 
 
From the contours plot, we estimate the 
minimum to be in the rectangular region 
 0 < x <1 , 0 < y < 1. We choose (0,0) as 
the starting point   
 
The CG and DFP methods were used 
with the Newton-Raphson refinement.  
 
The results for each method are shown 
in the following table. 
 

 
Algorithm Accuracy Time 
Downhill-Simplex 4E-8 1 sec 
CG +NR (with exact derivatives) 2E-3 5 sec 
DFP+NR (with exact derivatives) 2E-3 5 sec 
Random 1E-5 10 sec 

 
Surprisingly the methods that are derivative-free like Random and Simplex, show the 
best results. 
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This happens because they are not affected by the cancellation of the 2nd derivatives 
On the contrary the other method, also with NR refinement step, cannot reduce the 
error less then 1E-3. Note that the bigger error happens over the y variable.  
This is not strange because, as we have demonstrated, the y variable annihilates its 
2nd derivatives at the point y = 0.5. 
 
Example 4 (The trap) 
This interesting example shows how to avoid a situation that would trap the most 
sophisticated algorithms. This happens when there are one or more local extremes 
near the true absolute minimum. 
 
Assume the minimum of the following function is to be found: 

( ) ( )22210 2222

5.01),( +−−+−+− −⋅−= yxyxyx eeyxf  
 
The contours-plot shows the presence of two extreme points: one in the center (0, 0), 
called A, and another one in a more narrow region near the point (1, 1), called B 
 

 
 
It's interesting to also draw the 3D 
plot. We note the presence of the 
larger local minimum at the center 
point A (0, 0) and the true narrow 
minimum near the point B. 
If we choose a starting point like  
(-1,-1) the algorithm path would likely 
cross into the point (0, 0) region and 
will be trapped at this local minimum. 
On the contrary, if we start from the 
point (2, 2) it is reasonable to guess 
that we would find the true minimum. 
But what will happen if we start from 
a point like (0, 1) ? Let's see. 
 
 
We try to find the minimum with all the methods, starting from the point (0, 1), in the 
domains of -2 < x < 2  and -2 < y < 2. 
 

Algorithm x y Accuracy Time 
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Downhill-Simplex 8.38E-08 2.04E-08 - 2 sec 

CG 4.03E-08 4.06E-08 - 5 sec 

DFP 4.23E-08 4.22E-08 - 6 sec 

Random 0.993075 0.993094 1.00E-05 12 sec 

 
As we can see, all algorithms, except one, fail to converge at the true minimum. They 
all fall into the false central minimum. Only the random algorithm has escaped from the 
"trap", giving the true minimum with a good accuracy (1E-5). Random algorithms are in 
general, suitable for finding a narrow global optimum where there are surrounding 
local optimums.. 
 
Convergence region 
It's reasonable that for the other algorithms there will be some starting points, from 
which the algorithm will converge to the true minimum B. There will be other starting 
points that the algorithm will end up at the false minimum (0,0). The set of "good" 
starting points constitutes the convergence region. 
  
A larger convergence region means a robust algorithm. 
 
We want to investigate the convergence regions for each of these algorithms. We 
repeat the above minimum searching with many starting points inside the domain -2 < 
x < 2  and -2 < y < 2. For each trial we note if the algorithm has failed or not. 
 
The results are shown as  2D graphs with the following regions color coded as 
indicated. 

Legend 

  True minimum 
  False minimum 
  Convergence OK 
  Convergence failed 
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Downhill-Simplex 

 
 

Conjugate-Gradient and Davidon-Flatcher-Powell 

 
 
 
The random algorithm, of course has a convergence region coincident with the black 
square 
 
As we can see, from the point of view of convergence, the most robust algorithm is the 
Random, followed by the Downhill-Simplex and then by the CG and DFP  
 
The Downhill-Simplex has a sufficiently large convergence region and is considered a 
robust algorithm. The CG, DFP and  the NR algorithms have, on the contrary a poor 
global convergence characteristic. 
 
Mixed Method 
But of course we could use a "mix of algorithms" to reach the best results 
For example if we start with the random method, we can find a sufficiently accurate 
starting point for the DFP algorithm. Following this mixed method, we can find the 
optimum with a very high accuracy (2E-9), no matter what the starting point was. 
 

Algorithm x y Accuracy Time 
Random+DFP 0.993086 0.993086 1.83E-09 20 sec 
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Example 5 (The eye) 
Derivative discontinuity in general can give problems to those algorithms using 
gradient information. But this not always true.  
 
Assume the minimum of the following function is to be found: 

|1||2| ),( 2 −+−= yxyxf  
 
The contour-plot takes on an "eye" pattern for the individual contours. The plot shows 
that the minimum is clearly the point (2, 1). Note from the 3D plot that the gradient in 
the minimum is not continuous. 
 

 
 
Let's see how the algorithms works, in the domain box 0 < x < 4 and 0 < y < 2 , starting 
from the point (0, 0) 
 

Algorithm x y error 
Simplex 2 1 2.34E-13 
CG 2.007159289 1 3.58E-03 
DFP 2 1 0.00E+00 
Random 1.99990227 0.999999965 4.89E-05 

 
A good result. Only the CG algorithm has had some difficulty, but the other algorithms 
have worked fine.  
 
Example 6 (Four Hill) 
Many times the function to be optimized is symmetric to one or both axes. 
 
Assume the maximum of the following function is to be found: 
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Both variables appear only with even powers. So the function is symmetric to both x 
and y axes. This means that if the function has a maximum in the 1st region 
 {x, y | x>0 , y>0 }, it will have also three other maximum extremes in all other regions. 
The optimization macros cannot give in one pass, all four maximum points (within the 
designated region) so one of them is chosen randomly. To avoid this little indecision 
we must give the initial starting point nearer one of these points or, resizing the 
convergence region. 
 
No too clear? Never mind. Let's see the following plot in the symmetric region 

−2 < x < 2 , −2 < y < 2 
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Contours plot 

 
 

3D plot 
 

 
 
It's clear that the function has four symmetric maximums in every region of the 
selected interval. We can restrict our study to the 1st region 0 < x < 2 , 0 < y < 2.  
In this region, starting from a point like (2, 2) all algorithms work fine in reaching the 
true maximum extreme (1, 1) with good accuracy. 
 

Algorithm x y error 
Simplex 0.999999993 1.000000045 2.59E-08 
CG 1.000000005 1.000000005 5.27E-09 
DFP 1.000000005 1.000000005 5.27E-09 
Random 1.000020331 0.999983443 1.84E-05 

 
More accurate values can be obtained only with the aid of the gradient and the 
Newton-Raphson extra-step.  
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Example 7 (Rosenbrock's parabolic valley) 
This family of test functions is well know to be a minimization problem of high difficulty. 

( ) ( )222 1),( xxymyxf −+−⋅=  
 
The parameter "m" changes the level of difficulty. A high m value means high difficulty 
in searching for a minimum. The reason is that the minimum is located in a large flat 
region with a very low slope. The following plots are obtained for m = 10 
 
Rosenbrock's parabolic valley for m = 10 
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The function is always positive except at the point (1, 1) where it's 0. Taking the 
gradient it's simple to demonstrate this. 
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From the second equation, we get: 

( ) 22           02 xyxym =⇒=−  
 
Substituting in the first equation, we have: 

( ) 1         022          022124 23 =⇒=−⇒=−⋅−+⋅ xxxmxxm  
 
So the only extreme is at the point (1, 1), which is the absolute minimum of the 
function. 
Starting from the point (0, 0) we obtain the following results 
 

Algorithm x y error time 
Simplex 1 1 2.16E-13 2 sec 
CG 0.999651904 0.999345232 5.01E-04 50 sec 
DFP 1.000000003 1.000000005 4.43E-09 55 sec 
Random 0.999964535 1.000057478 4.65E-05 25 sec 

 
Note that some algorithms may reach the limit in the number of iterations in this 
example. 
If we repeat the test with m = 100, we have the following result: 
 

Algorithm x y error time 
Simplex 1 1 4.19E-13 2 sec 
CG 0.63263162 0.39851848 4.84E-01 50 sec 
DFP 0.999906486 0.999732595 1.80E-04 55 sec 
Random 0.983902616 0.976456954 1.98E-02 25 sec 

 
We note a general loss of accuracy, because all algorithms seem to have difficulty in 
locating the exact minimum. They seem to get "stuck in the mud" of the valley. Also 
the random algorithm seems to have a greater difficulty in finding the minimum. The 
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reason is that, when the random algorithm samples a quasi-flat area, all points have 
similar heights so it has difficulty in discovering where the true minimum is located.  
The only exception is the Downhill-Simplex algorithm. Its path, rolling into the valley, is 
both fast and accurate. Why? I have to admit that we cannot explain it... but it works! 
 
Rosenbrock's parabolic valley for m = 100 
 

 
 
 
Example 8 (Nonlinear Regression with Absolute Sums) 
This example explains how to perform a nonlinear regression with objective function 
different from the Least Squared. In this example we adopt the Absolutes Sum  
We choose the exponential model: 

xkeakaxf ⋅−⋅=),,(  
 
The goal of the regression is to find the best couple of parameters values (a, k) that 
minimize the sum of the absolute value of the difference between the regression 
model and the given data set. 

∑ −= |),,(| kaxfyAS ii  
 
The objective function AS depends only on the parameters a and k. By minimizing AS, 
with our optimization algorithms, we hope to solve the regression problem. 
 
A possible arrangement of the worksheet may be: 
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We hope that by changing parameters "a" and "k" in the cells E3 and F3, the objective 
function in G3 goes to its minimum value. Note that the objective cell G3, being the 
sum of the range D3:D13,  depends indirectly on the cells E3 and F3. 
 
Start the Downhill-Simplex and insert the appropriate range as shown in the input box. 
 

 
 
Starting from the point (1, 0) you will see the cells changing quickly until the macro 
stops itself, leaving the following "best" fitting parameter values of the regression y* 
 
 
Best fitting parameters  
 

a k 
1 -2 

  
 
The plot of the y* function and 
the samples of data set y are 
shown in the right graph. As 
we can see the regression fits 
perfectly the dataset. 
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Example 9 (The ground fault) 
Assume the minimum of the following function is to be found: 
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The contours and 3D plots of this function are shown in the following graphs 
 

 
 
contours-plot  

 
3D plot 

 
Both plots indicate clearly a narrow minimum near the point (2, 1). Nevertheless this 
function may create some difficulty because the narrow minimum is hidden at the 
cross of two long valleys (like a ground fault). 
In order to increase the difficulty, choose a large domain box: 

-10 < x < 10  and -10 < y < 10 
and (0, 0) as starting point.  
The results are in the following table 
 
 

Algorithm x y error time 
Simplex 1.999999996 1.000000004 7.93E-09 1 sec 
Random 1.999870157 1.000341845 4.72E-04 9 sec 
CG 2.000000021 1.00000002 4.08E-08 11 sec 
DFP 2.00000001 1.000000028 3.80E-08 13 sec 

 
 
Example 10 (Brown bad scaled function) 
This function is often used as a benchmark for testing the scaling ability of algorithms 

( ) ( ) ( )22626 21010),( −+−+−= − xyyxyxf  
 
This function is always positive and it is zero only at the point (106 , 2 10−6 ). At this 
point, the abscissa is very high and the ordinate is very low. It is hard to generate good 
plots of this function. We also have no idea where the extremes are located. This 
situation, is not very common indeed, but if this happens, the only thing that we can do 
is to run the Downhill-Simplex algorithm trusting in its intrinsically robustness. 
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Algorithm x y rel. error
Simplex 1000000 2.00E-06 1.61E-13

 
Fortunately, in this case, the algorithm converges quickly to the exact minimun with a 
very high accuracy 
 
 
Example 11 (Beale function) 
Another test function that is very difficult to study: 

( )[ ] ( )[ ] ( )[ ]23222 1625.2125.215.1),( yxyxyxyxf −−+−−+−−=  
 
It is always positive, being a sum of three square terms. So the minimum, if exists, 
must be positive or 0. 
 
Let's try to draw the 3D (see right) 
The 3D plot, in the range: 

−4 < x < 4, −4 < y < 4 

shows an extremely flat valley, 
bordered at the corners with high walls. 
This plot is quite useless for locating 
the minimum 
 
Let's try with the contours-plot.  
Maybe we will get some more 
information. 
 
 

 
 
Contours-plot of the Beale 
function 
 
The plot locates the 
minimum in the region  
 
0 < x < 5 and  
0 < y < 1 
 
We could use (2, 0). as 
starting point  
  
 
With this initial condition all algorithms work fine. 
 

Algorithm x y error 
Simplex 3 0.5 3.4E-13 
Random 3.000097478 0.5000228382 1.56E-04 
CG 3 0.5000000001 1.45E-10 
DFP 3 0.5 9.7E-14 

 
 
Note that the convergence is highly influenced by the starting point. We can verify it 
simply by starting the CG algorithm from the point (0, 0). The result, after two steps, 
will be  
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Algorithm x y error iteration 
CG (1st step) 2.933979062 0.482383744 0.083637 2020 
CG (2nd step) 2.999966486 0.499991634 4.19E-05 810 

 
As we can see, the final accuracy is a thousand times less then the previous one. 
Clearly the time spent for choosing a suitable starting point is useful (This is in general 
true, when it's possible). 
 
Examples of multivariate functions 
The searching of extremes of a multivariable function, apart from elementary 
examples, can be very difficult, This is because, in general, we cannot use the graphic 
method illustrated in the previous examples with one and two variable functions. 
Sometimes graphic methods may still be applied for particular kinds of functions. 
 
Example 1 (Splitting function method) 
Sometime the function can be split into parts, each having a separate set of variables. 
If each part contains no more than two variables, we can apply the graphic method for 
each part.. This example explain this concept. 
 
Assume the maximum and the minimum of the following function is to be found: 
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First of all, we observe that the function has no maximum; so it could have only the 
minimum. 
This function can be split into two new functions. One of 2 variables (g(x,y)) and the 
other of 1 variable h(z). 
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We can plot and study each sub-function separately 
 
Contours of g(x,y) 
 

 
 

Plot of h(z) 
 

 
 

 
From the first contours-plot we deduce that the minimum is located in the region of −2 
< x < 0 and −1 < y < 1. From the second plot we have the region  −0.2 < z < 0. Now 
we have a constraints box for searching for the minimum of f(x,y,z). 
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Let's begin the search with the aid of the random macro. The approximate values 
obtained by this algorithm will be used for the starting point of all other macros 
 
For clarity we have rounded (by it’s not necessary) the values obtained by the random 
macro give the following approximate starting point  
 

x y z 
-0.6 0.02 -0.1 

The final result is: 
 

Algorithm x y z error time 
Simplex -0.673971092 0.121063763 -0.111111097 1.10E-08 1 sec 
CG -0.673969032 0.121061596 -0.11107768 1.83E-05 8 sec 
DFP -0.673971099 0.12106377 -0.111111112 1.74E-09 10 sec 
Random -0.674388891 0.019641604 -0.113652504 2.68E-02 5 sec 

 
 
Example 2 (The gradient condition) 
Assume the maximum and the minimum of the following function is to be found: 

( ) ( ) 22),,( zxyyzxzyxf +−+−=  
 
This function is top-unlimited being 
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So we have to study the minimum (if any). The gradient condition is: 
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We see that the only point for the minimum is (0, 0, 0). Starting from any point around 
the origin, every algorithm will converge to the origin. 
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An example of a variation of this function 
We have seen that this function has no upper limit. This is true if the variables are 
unconstrained. But surely the maximum exists if the variables are limited by a specific 
range. Assume now that each variable must be limited in the range [−2, 2]. 
 
In this way the maximum surely will belong to the 
surface of the square box centered around the origin 
and having length of 4. 
 
But where in this box will the maximum be located? 
It may lie on a face, or on edge, or even at a corner 
of the box. Let's discover it 
  
 
We can restart the macro "random" searching for the max in the given box or we can 
also use the CG macro starting from any internal point like for example (1, 1, 1) 
Here are the results 
 

Algorithm f x y z 
Random 30.378 -2.057 2.148 2.073 
CG 28 -2 2 2 

 
We see that the max, f = 28, is located in the corner (−2, 2, 2) 
We have to observe that the function is symmetric with respect to the origin. 

),,(),,( zyxfzyxf −−−=  
 
So there must be another maximum point at the symmetrical point (2, −2, −2). To test 
for it, simply restart the CG macro, this time choosing the starting point (2, −1, −1). It 
will converge exactly to the second maximum point. 
 
Example 3 (Production) 
This example shows how to tune the production of several products to maximize profit. 
The function model here is the Cobb-Douglas production function for three products. 

3.0
3

2.0
2

1.0
1 xxxp ⋅⋅=  

Where x1, x2, x3 are the quantities of each product (input) and "p" an arbitrary unit-less 
measure of value of the ouput products.  
The production cost function can be expressed as 

0332211 cxcxcxcc +++=  
where c1, c2, c3 are the production costs of each item and  c0 is a fixed cost. The total 
profit (our objective function) can then be expressed as g = s·p - c , where s converts 
the Cobb-Douglas production function "p" value to the same units of cost. 

Now let's find the best solution in the Excel worksheet given the following constant 
values 

c1 c2 c3 c0 s 
0.3 0.1 0.2 2 2 

 
with the constraints  x i > 0 , and with the following maximum limits: 
 

max x1 max x2 max x3 
10 50 50 
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A possible arrangement could be 
 

 

The cost for each item plus the 
fixed cost and the sale cost factor 
are in the upper area (grey) 
 
The independent quantity and the 
production quantity are in the 
middle 
 
Finally the quantity constraints are 
in the bottom area 
 
The objective function is in E10 
(yellow area) 

 
For a starting point we can use the middle point of each range (5, 25, 25) 
We then try several algorithms, obtaining the following results  
 

Algorithm x1 x2 x3 rel. error 
Simplex 2.7463564 16.478137 12.358603 4.92E-08 

CG2 2.7463607 16.478145 12.358610 1.77E-06 
DFP 2.7463601 16.478219 12.358624 1.01E-05 
Random 2.7465324 16.478903 12.359436 1.69E-04 

 
 
Example 4 (Paraboloid 3D) 
This is a classical but also a very common surface test 

621464265102),( 222 +−−−+−+++= zyxyzxzxyzyxyxf  
 
Finding the extremes is easy by solving the following linear system of gradients.  
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The solution is (1.4,  0.2,  0.4) 
Let's see how the algorithms work with this function. Assume a starting point of (0, 0, 
0) and a large constraint box: 

−10 < x < 10 , −10 < y < 10 and −10 < z < 10 
 

Algorithm x y z error time 
Simplex 1.400000002 0.199999985 0.400000006 7.89E-09 3 sec 
Random 1.391827903 0.207765553 0.395835393 6.70E-03 20 sec 
CG 1.400000021 0.200000017 0.400000008 1.53E-08  8 sec 
DFP 1.399999897 0.200000048 0.39999996 6.38E-08 4 sec 
CG+NR 1.4 0.2 0.4 1.00E-16 12 sec 
DFP+NR 1.4 0.2 0.4 1.00E-16 6 sec 

 

                                                      
2 the CG algorithm was restarted 2 consecutive times 
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LP - Linear programming 
A Linear program represent a problem in which we have to find the optima value 
(maximum or minimum) of a linear function of certain variables (objective function) 
subject to linear constraints on them. 
 
LP - Linear programming 
This macro solves a linear programming problem by the Simplex algorithm 
Its input parameters are: 

• The coefficients vector of the linear objective function to optimize 
• The coefficients matrix of the linear constraints  

 
The constraints  x i ≥  0 are implicit. 
The constraint symbols accepted are "<", ">", "=" "<=", ">=" 
Let's see how it works with a simple example.  
Find the maximum of the function 
 

4321 5.03 xxxxF −++=  
 
with the following constraints 
 








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=+++
≥+−

≤−
≤+
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072
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4321

432

41

31

xxxx
xxx

xx
xx

 

and with  
 

0  ,  0  ,  0  ,  0 4321 ≥≥≥≥ xxxx  
 
The following worksheet shows a possible simple arrangement 
 

 
 
The range B2:E2 contains the coefficients of the linear objective function 
The range B4:G7 contains the coefficients matrix of the linear constraints 
Note: the symbols "<" and "<=" or ">" and ">=" are numerically equivalent for this 
macro. 
 
Now select the objective function range B2:E2 and start the macro Linear 
Programming from the menu Optimiz... > Optimization 
 
Check the input box and click "Run" 
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The solution found, in the range B9:E9 is 

x1 = 0 ,   x2 = 3.375 ,    x3 = 4.725  ,  x4 = 0.95 
 
The macro returns "inf" if the feasible region is unbounded; returns "?" if the feasible region 
is bounded but no solution exist. Observe that this macro does not work on site, therefore it 
is very fast and can solve more large problems. 
Example. Find the solution of the following LP problem 

{ }54321 42max xxxxx +−+−  
The matrix constraints is 
 

75 -88 -93 -21 132 ≤ 205
-137 -115 75 111 -49 ≤ 146

64 -6 107 -161 -8 ≤ 204
-91 -124 -86 154 -74 ≤ 81

-153 -97 9 -152 -79 ≤ -162
-135 165 67 185 220 ≤ 1164

90 22 5 138 -111 ≤ 345
20 -40 107 -12 -162 ≤ 113

-97 -88 147 86 31 ≤ 314
59 -3 142 55 -116 ≤ 335

 
A possible worksheet arrangement is the following 
 

 
 
The solution found by the Simplex algotihm is  
 

x1 x2 x3 x4 x5 
3.011 1.539 3.235 1.852 3.442

 
Note that the value of the function, calculated in the cell L9, is about f ≅ 19.9 
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Optimization with Linear Constraints 
The Linear Programming seen in the previous chapter is the mostly commonly applied 
form of constrained optimization. Constrained optimization is much difficult then 
unconstrained optimization: we have to find the best point of the function respecting all 
the constraints that may be equalities or inequalities. The solution (the optimum point), 
in fact, may not occur at the top of a peak or at the bottom of a valley. 
The main elements of any constrained optimization problem are: the objective 
function, the variables, the constraints and sometime the variable bounds. 
When the objective function is not linear (example a quadratic function) and the 
constraints are linear we have a so called NLP with linear constraints. 
 
NLP with linear constraints 
This macro solves a non-linear programming problem having linear constraints 
It uses the CG+MC algorithm. This algorithm works fine with quadratic functions but it 
can also work with other non linear smooth functions 
It needs information about 

1. The cell containing the the function to optimize (objective function) 

2. The range of the cells containing the variables to be changed (max 9 
variables) 

3. The range containing the variable bounds (minimum and maximum 
limits)  

4. The range containing the linear constraints coefficients . 
 
The constraint accepted are "<", ">", "<=", ">=" 
Note that, for this macro, the symbols "<" and "<=" or ">" and ">="  are equivalent. 
 
Example: Find the minimum of the function 

9822),( 22 +−−+= yxyxyxF  
 
with the following constraints 


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The following graph shows the contour lines (blue) of the function F(x, y) and the linear 
constraints (red).  
 

 

We observe that the "free" 
minimum of the function is located 
outside of the feasible region.  
 
The constraint minimum lies on the 
line  3x+2y = 6 .  
 
 

 
Now let's see how to compute numerically the constrained optimum point 
The following worksheet shows a possible arrangement 
The cell D2 contains the function definition =B2^2+2*C2^2-2*B2-8*C2+9 
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The range B4:C5 is the constraints box and the range B7:E8 contains the two linear 
constraints. 
 

 
 
Note: symbols "<=" and "<" are equivalent for this macro 
Select the cell D2 and start the macro Linear Constraints from the menu Optimiz... > 
Optimization 
 

 
 
Because this macro works "on site", the solution appears directly in the variables cells 
B2:C2. 

x = 0.727272727272713,   y = 1.90909090909093 

Compare with the exact solution (8/11, 21/11) 
 
Other settings 
 
Maximum or Minimum  Selection:  The two buttons in the upper right of the menu 
box switch between the minimization and maximization algorithms 
 
Stopping Limit. In each panel there is always an input box for setting the maximum 
number of iterations or the maximum number of  evaluation points allowed. The macro 
stops itself when this limit has been reached. 
 
Relative Error Limit: input box for setting the relative error limit.  
 
Rnd: this check-box activates/deactivates the random starting algorithm.  If selected, 
the starting point is chosen randomly inside the given constraints box. Otherwise the 
algorithm starts with the initial variables value (cell B2:C2 of the example). This feature 
may be useful when we already know a sufficiently close solution or when there are 
many local optima points. 
 
Example: Find the minimum and the maximum of the function 
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with the following constraints 
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The following graph shows the contour lines (blue) of the function F(x, y) , the linear 
constraints (red) and the box constraints (green).  
 

 

We observe that the "free" 
maximum of the function is located 
inside of the feasible region.  
 
The constraint minimum is locate at 
the corner between the line  x-y = 2 
and x = 3 
 

 
Arrange a worksheet as the following inserting the function definition in the cell D3 
 
=1/(B3^2 -B3*C3 -B3 +C3^2 -C3 +2) 
 

 
 
If you select the "max" option the algorithm will find the point (1, 1) while if you select the 
"min" option the algorithm will approach to the point (3, 2) 
Observe that if you have selected the "Rnd" option, the starting point (0, 0) will be ignored 
by the macro. On the contrary if you deselect it, you must provide an adapt initial point. 
In this case we will see that the point (0,0) may be good for the finding the maximum point 
but with (0, 0) the algorithm fails to reach the minimum point. 
For the minimum searching we should start, for example, from the point (2, 1) 
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Nonlinear Regression 
Nonlinear Regression 
 
Nonlinear regression is a general fitting procedure that will estimate any kind of 
relationship between a dependent (or response variable), and a set of independent 
variables. In this document we focus our attention on unvariate relationships (one 
response variable "y", one independent variable "x") 

)...,,( 21 npppxfy =  
Where the parameters p1, p2, ...pn are the unknowns to be determined for the best fit. 
 
When we investigate the relationship between two variables, we have some steps to 
follow: 

1) Sampling. We take experimental observations of the system in order to get a 
dataset of n samples (xi, yi) , i =1, ...n. The dimension n varies from few points 
to thousand of samples. 

2) Modelling. At the second step we have to choose a function that should best 
explain the response variable of the system. 

a. This task is dependent on the theoretical aspects of the problem, 
prior information on  the source of the data, what the resulting 
function will be used for, your imagination or your experience. 

b. It would be useful to first plot the points of the dataset in a scatter x-
y graph. By a simple inspection we can "smell" which model could 
be a fit.  

c. We have to recognize that the data set has errors of measurement, 
and that we should not over-fit the model to fit these errors. A 
knowledge of statistics is important here. We have to recognize that 
the data is a sample, and that there are sampling errors involved. 

d.  Actually, we should performs several trials before finally choosing 
the best model. 

3) Prediction. We try to estimate a set of parameter (p1, p2, ...pn)(0) that should 
approximate the given experimental dataset. These parameter may have 
some theoretical basis, other than just “fitting” parameters. 

4) Starting the fitting process. We try at first with some set of reasonable 
parameter values as a starting point. We should try several starting points to 
see if there is a dependency on the results due to different starting points. 
This is common in scientific problems involving complex functions where the 
surfaces may have many local minimums, at unknown parameter 
combinations. 

Chapter 

3 



 

 47 

5) Error measurement. Now, by using the fitted model function, we calculate 
the response values yi* at the same point xi of the sampling. Of course the 
predicted values will not exactly match the yi values obtained from the 
sampling, and the differences are the residuals  (yi* − yi ). We can take the 
sum of the square of the residuals RSS = ∑(yi* − yi )2  as a measure of the 
distance between the experimental data and our model. In other words the 
RSS measures the goodness of our fit. Low RSS means a more accurate 
regression fit and vice versa. The error measurement function is also called a 
loss function. 

6) Correction. The initial set of parameter values is changed in order to reduce 
the RSS function. This is the heart of the non-linear regression process. This 
task is usually performed with minimization algorithms. We could use any 
algorithm that we like, but by experience we have observed that some 
algorithms work better then others. Because the function model is known, and 
then we also know its derivatives, we could choose an algorithm that exploits 
the derivative information in order to gain more accuracy. 

(a) There is one very efficient algorithm, so called the quasi-Newton, 
which approximates the second-order derivatives of the loss function to 
guide the search for the minimum. 

(b) The Levenberg-Marquardt is a popular alternative to the Gauss-
Newton method of finding the minimum of a function that is a sum of 
squares of nonlinear functions The Optimiz.xla non-linear fitting process 
uses just this algorithm for minimizing the residuals squared sum 

 
The set of parameters found at step 5 can now be used for repeating step 3 and, if the 
process is convergent, after some iterations we'll get the "best" set of parameters (p1, 
p2, ...pn)(0) . That is the set of parameters best fitting the given dataset, in the sense of 
the least squared residuals criteria.. 
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Nonlinear Regression for general functions 
 
Levenberg-Marquardt macro 
Optmiz.xla has a macro for performing least squares fitting of nonlinear functions 
directly on the worksheet with the Levenberg-Marquardt algorithm3. It uses the 
derivatives information (if available) or approximates them internally by the finite 
difference method. It needs also the function definition cell (=f(x, p1, p2,...), the 
parameter starting values (p1, p2,...), and of course the dataset (xi, yi). 
 
The Levenberg-Marquardt method uses a search direction that is a cross between the 
Gauss-Newton direction and the steepest descent. It is an heuristic method that works 
extremely well in practice. It has become a virtual standard for optimization of medium 
sized nonlinear models.4 
 
 

The range of (n x m+1) contains the given 
dataset (x1, x2..xm, y)

Sets the maximun iterations allowed

The range of (n x 1) contains the function 
definition f(x, a, b, c..) of the regression model

The range of p cells contains the  
parameters of the regression model. The 
cells must match the parameters number

The range (n x p) contains the derivatives 
definition (df/da, df/db, df/dc,...).
If empty, the algorithm approximates the 
derivatives by the finite difference formulas

 
 
The check boxes at the right activate/deactivate different elaboration tasks 

NLR. Switches on/off the Nonlinear regression 

ESD. Calculates the Standard Deviation of the Estimates 

RSD. Calculates the Residual Standard Deviation 

 
Layout. In order to automatically fill in the input box, the macro assumes a typical 
layout: first the x-column, then the y-column at the right, and then the function column. 
But this is not obligatory at all. You can arrange the sheet as you like 
 
Example: Assume that you have the following data set (xi,yi) of 7 observations and 
you have to perform a least squares fit with the following exponential model having 2 
parameters (a, k). 

xkeay  * ⋅=  
 

                                                      
3 The Levenberg-Marquardt subroutine used in Optimiz.xla was developed by Luis Isaac Ramos Garcia. 
Thanks to its kindly contribution we have the chance to publish this nice, efficient -and rare - VB routine in 
the public domain. 

4 The implementation details of how this works are reviewed in Numerical Recipes in C, 2nd Edition, 
pages 683-685. 
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This model has the following derivatives 

xke
a
y ⋅=
∂
∂  

*

    ,     xea
k
y xk ⋅=
∂
∂  

*

 

 
A worksheet arrangement could be. 
 

 
 
Select the first cell A2 and start the 
macro Levenberg-Marquardt. The 
input box will be automatically filled 
except the derivatives range D2:E8 
that isn't obligatory.  If you add this 
range in the input box, the macro 
will use these values for the 
derivatives evaluation; otherwise 
they will be approximated internally 
with the finite differences method. 
Run the macro and after a few 
iterations the final result in the 
parameters cells will be 
 

a = 9.76526 
k = -1.98165  

 
 
And the plot of the y and y* (regression function) looks like the following graph 
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Observe that the LM algorithm converges also from starting condition quite distance to 
the optimum. This is a didactical example to show the robustness if this algorithm. 
Usually the intial conditions should be set better than the provious one. 
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Re-try without derivatives. The LM will converge to the same optimal solution. From 
our experimentation, we have observed that derivatives usually increase the final 
accuracy of 1-2 order. 
 
This macro can manage also multivariable regression. 
Example. Assume that you have a bidimensional data set (x1, x2, y) and you have to 
find the best fit with the following rational model having 3 parameters (a, b, c). 

2
221

2
1

*

   
1

xcxxbxa
y

++
=  

 
A worksheet arrangement could be as the following. 
 

 
 
The dataset is in the range A2:C12. The cells G2, G3, G4 contains respectively the 
parameters a, b, c. Each cells of the range C2:C12 contains the model definition. For 
example the cell D2 contains the formula: =1/($G$2*A2^2+$G$3*A2*B2+$G$4*B2).  
Choose a compatible starting point - for example a = 1, b = 1, c =1, select the range 
A2:C12 and start the macro. If you have followed the above disposition all the input 
box will be correctly filled. Mark the check box "ESD" and "RSD" in order to calculate 
also the standard deviation of the estimates and the regression. Press "Run" 
 

After a few seconds the macro will 
converge to the optima solution and 
will output the standard deviation 
 

 
 
 

 
The Standard Deviations of the Estimates are always placed adjacent to their 
parameters. The Residual Standard Error is always output just two rows below the last 
parameter. So be sure that these cells are empty before starting the macro with the 
options ESD and RSD active. 
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Nonlinear Regression with a predefined model 
This set of macros comes in handy when we have to perform a nonlinear regression 
using a predefined model. They are much faster that the general nonlinear regression 
macro and, in addition, you do not have to build the formula model and its derivatives.  
 
The predefined models added in this version are: 
 

Rational  
.we can set the degree 
for numerator and 
denominator  (max 
degree: 4) 
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Exponential  
(from 2 to 6 
parameters.) 
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Input/Output information 
 

 

All those macros need in input only the data (xi, yi) to 
fit that must be an array of N rows and 2 columns 
 
Output parameters field contains the starting cell 
where you want to write the unknown parameters. 
Make sure that the cells below are empty, because 
the macros will begin to write from the starting cells to 
the cell below for each parameter to output. 
 
Output regression (optional) is the range of cells that 
you want to fill with the regression values y*. Usually 
is the column (n x 1) near to the y values column 
If you check "add formula" the macros will insert the 
model formula directly into your worksheet instead of 
the simply 

 
 
Example 
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The data to fit is the range A2:B8 
The output parameter cell is E2. Because the selected model has 3 parameters, the 
area automatically filled in will be the range E2:F4 
The output regression range is C2:C9 
 
 
Example 1 (Exponential class) 
To explain how to perform a Nonlinear Least Squares Regression with the aid of Excel 
and the addin Optimiz.xla we take the example of the standard dataset Misra1a.dat of 
the NIST/ITL StRD (1978) 
 
This dataset contains 14 observations, 1 response variable  (y = volume), 1 predictor 
variable (x = pressure) 
The model belongs to the "Exponential" class with 2 parameters (b1, b2) to determine 
 
y = b1*(1-exp[-b2*x]) 
 
Data:   y            x 
-------------------------- 
      10.07E0      77.6E0 
      14.73E0     114.9E0 
      17.94E0     141.1E0 
      23.93E0     190.8E0 
      29.61E0     239.9E0 
      35.18E0     289.0E0 
      40.02E0     332.8E0 
      44.82E0     378.4E0 
      50.76E0     434.8E0 
      55.05E0     477.3E0 
      61.01E0     536.8E0 
      66.40E0     593.1E0 
      75.47E0     689.1E0 
      81.78E0     760.0E0 
 
 
We can prepare the worksheet as follows: 
 
In the range A2:A15, we insert the x-data. In the next right column B2:B15 the y-data 
is inserted and in the next column C2:C15, we insert the regression formula,  
= b1*(1-EXP(−b2*x))  in each cell. The consecutive columns of data x, y and function 
model y* make up the layout standard for the macro.  
 
The parameters b1, b2 are inserted in the cells F5, and F6. For the macro this would 
be sufficient, but we have inserted other useful functions; (a) calculating the residual 
squared sum  =SUMXMY; (b) computing the relative errors between the certified 
values and the approximated values  =ABS((F6-F10)/F10) , =ABS((F5-F9)/F9); and (c) 
the Log Relative Error (LRE)   = −Log(G5) and = -Log(G6) 
 

NIST-STRD 
Certified Values 
  b1 = 2.3894212918E+02   
  b2 = 5.5015643181E-04   
 
Residual Sum of Squares: 
1.2455138894E-01 
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The starting point is given in the NIST Misr1a file:  b1 = 200, b2 = 0.002.   
 
With this starting value the sum 
of square is about 45700 and 
the two plots of the given data 
and of the regression function 
are shown in the graph at the 
right. 
As we can see the difference is 
evident. By trying different 
parmeter values we could find 
a better starting point. We have 
to point out that a sufficiently 
accurate starting point is the 
key for coming out with a good 
nonlinear regression.  
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Many times the non-linear regression fails to converge, because of a starting point too 
far from the optimum parameter values. 
 
Before starting the macro select the range of data xy (or, alternatively, it is sufficient to 
select the first cell A2). In this way, the macro will automatically recognize the 
complete range. If the macro cannot find the right input ranges, the input boxes will be 
empty and you must indicate the correct ranges. In this case, re-input the data range 
as the complete full range. 
 
Now check the input and start the macro "Levenberg-Marquardt" 
 
The calculation will take place under your eyes because the macro works on site. Step 
after step the parameters converge to the optimum while the residual squared sum 
becomes smaller. When this values does not decrease any more, the macro stops 
itself, leaving the final "optimum" parameters b1 and b2 in F5 and F6. 
The macro stops itself if something goes wrong; in that case a short message will 
advise you that the final result could not be right. 
 
After a few seconds the macro will end leaving the following situation 
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As we can see the parameters found are different from the certified values by less 
then 1E-9. The algorithm has caught 8 exact digits out of 10 total digits! Clearly this 
accuracy is superfluous for a normal fitting, but it is a good example that shows what 
the Levenberg-Marquardt algorithm can do. 
 
We have to point out that sometimes the process cannot give such accurate results. 
However, by restarting the process with new starting values corresponding to the last 
set of calculated parameter values, we can see if the values will change to achieve a 
better fit Remember that your guide for judging a result is always the magnitude of the 
residuals squared sum (orange cell). 
 
Try for example a start with the following parameters  b1 = 100, b2= 0.01  (this starting 
situation is worse that the previous one as you can see from the plot) In this case the 
macro found new parameters. Even if they seem accurate, these parameter are less 
accurate then from the previous pass.  
 

parameter values Errore rel LRE 
b1= 238.94210968 8.161E-08 7.1
b2= 0.0005501564842 9.523E-08 7.0

 
Using this parameters as a new starting point, start again the macro.  
 

parameter values Errore rel LRE 
b1= 238.94212918 2.934E-12 11.0
b2= 0.0005501564318 3.925E-11 10.4

    
 Certified values   
 238.94212918   
 0.0005501564318   

 
What happens? The macro has reached the best possible accuracy catching all 10 
digits exactly. Clearly this a lucky case but it summarizes a strategy that we should 
adopt in searching for the best fitting model. Try and.. re-try 
 
 
Example 2 (Exponential Class) 
Let’s see another example with the standard dataset. Chwirut.dat of the NIST/ITL 
StRD (197?)) 
This dataset contains 54 Observations,  with one response  (y = ultrasonic response) 
and one predictor (x = metal distance). The model belongs to the "Exponential" class 
with 3 parameters (b1, b2, b3) and is: 
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The dataset is too long to report here, but you can download it from the NIST StRD 
site. A summary of the NIST certified results are: 
 
y = exp(-b1*x)/(b2+b3*x) 
 
b1 =   1.6657666537E-01 
b2 =   5.1653291286E-03 
b3 =   1.2150007096E-02 
 
Residual Sum of Squares:  5.1304802941E+02 
 
 
Again, in order to choose the starting 
point, we plot a scatter graph of the 
dataset. Note that there are multiple y 
values for a single x. This fact is a very 
common occurrence with real 
measurements. We can estimate the 
exponential dampening  factor with the 
rule of 1/3 decay time. That is: we take 
the time t* where the y values have 
decayed to about 1/3 of the initial 
value. Here the initial value is ymax ≅ 
90 and the 1/3 point is about 1.8. From 
this we estimate b1 = 1/t* ≅ 0.57 
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Another drastic assumption is b1 = 1/100 and b2 = 0. This means that we are 
beginning with a pure exponential profile, and the starting regression looks like as in 
the graph (pink-line) 
The worksheet arrangement could be like the following 
 

 
 
Now let's to begin with the regression. Select the cell A2 and start the macro 
"Levenberg-Marquardt". If you have made the same set-up, you will see the entire 
input box fill with the correct ranges. Select "Run" and after a few seconds the macro 
ends leaving the following results 
 

Parameters evaluated certified Rel. error 
b1 0.16657462110 0.16657666537 1.2272E-05 
b2 0.0051652931015 0.0051653291286 6.9748E-06 
b3 0.012150093436 0.012150007096 7.1062E-06 

 
res. squared 513.048029438 513.048029410

 
This is a very accurate result, being that the average relative error is less then 1E-5 
and the residual error is close to the expected one. 
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Can we improve the results? Let' see.  We restart the algorithm from these values and 
get a new set of parameter values: 
 

Parameters evaluated certified Rel. error 
b1 0.16657666491 0.16657666537 2.7602E-09 
b2 0.0051653291213 0.0051653291286 1.4206E-09 
b3 0.012150007114 0.012150007096 1.4781E-09 

 
As we can see the extra iterations have taken the global relative error to the level of 
about 1E-9, which is about the minimum that we can get from this data set with the 
given model. 
 
Every other iteration that we 
could add does not increase 
the precision any more so 
we decide to stop the 
regression. The final result 
is shown in the right plot. 
 
We have to point out that 
there are other starting 
points that do not converge 
to the optimum solution. 
For example if we start with 
the parameters: 
b1 = 1, b2 = 0.01, b3 = 0 
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The result will not converge to the right solution, even if the final fit is not so bad. This 
is a typical behaviour of the exponential class models 
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Example 3 (using derivatives) 
This example explains how to use the derivatives with the Levenberg-Marquardt 
algorithm.  
 
This algorithm needs one derivative for each parameter of the model. For example if 
the model has three parameters, we must provides the information for three partial 
derivatives: 
 

Model Derivatives 

),,,( 321 pppxfy =  
321

   ,      ,   
p
y

p
y

p
y

∂
∂

∂
∂

∂
∂

 
 
This information is provided indirectly, by an internal subroutine that approximates the 
derivatives with the finite-difference formula, or directly by writing the derivative 
formulas into the specific worksheet cells.  
 
In this example we performs the regression for the following function model 
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which have the partial derivative 
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The dataset to fit and its plot is shown below. We have also plot the function (pink-line) 
having the starting parameters  a1 = 0.1 and a2 = 0  
  

x y 
0 0 

0.1 0.00499970835 
0.2 0.01998135315 
0.3 0.04478851234 
0.4 0.07882527647 
0.5 0.12062366858 
0.6 0.16746264235 
0.7 0.21534838043 
0.8 0.25961024656 
0.9 0.29599955237 

1 0.32175055440 
1.1 0.33604846902 
1.2 0.33978560977 
1.3 0.33490615246 
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In our worksheet, also at the usually information, we have to insert the derivatives 
functions. A possible arrangement could be the following. The formulas of function and 
its derivatives must be filled into all cells below the first cell (by dragging) 
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Now  we are ready to begin the 
regression.  
Let's elect the cell A2 and start 
the macro. All input boxes will 
be filled except the derivatives 
one. Insert the range D2:E15 
 

 
After few iterations the 
parameters will converge to the 
optimum values: 
 a1 = 1 and a2 = 0.5 
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arctan(x2)-arctan(x2 /2)
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Example 4 (Rational class) 
The dataset. MGH09.dat from the NIST/ITL StRD (1981) data sets, belongs to the 
rational equation class of non-linear Least Squares regression. The problem of fitting 
parameter values was found to be difficult for some very good algorithms. This dataset 
contains 11 observations, 1 response , 1 predictor and 4 parameters (b1 to b4) to be 
determined. The equation to be fitted is: 

( )
43
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2

2
1

bxbx
xbxby

++
+

=
 

A summary of the certified NIST results and the data are: 
 
y = b1*(x^2+x*b2) / (x^2+x*b3+b4) 
 
  b1 =   1.9280693458E-01  
  b2 =   1.9128232873E-01  
  b3 =   1.2305650693E-01  
  b4 =   1.3606233068E-01 
 
Residual Sum of Squares: 
  3.0750560385E-04 
 
Data:  y               x            
       1.957000E-01    4.000000E+00 
       1.947000E-01    2.000000E+00 
       1.735000E-01    1.000000E+00 
       1.600000E-01    5.000000E-01 
       8.440000E-02    2.500000E-01 
       6.270000E-02    1.670000E-01 
       4.560000E-02    1.250000E-01 
       3.420000E-02    1.000000E-01 
       3.230000E-02    8.330000E-02 
       2.350000E-02    7.140000E-02 
       2.460000E-02    6.250000E-02 
 
 
In order to choose the starting 
point, we plot a scatter graph of 
the dataset. We can observe 
that  for x>>1 the intercept is 
about 0.2, from which we can 
estimate the parameter b1 

2.0lim 1 ≅=
∞→

by
x  
We cannot say anything about 
the other parameters, so they 
are assumed equal to 1: 
( b1= 0.2, b2 = b3 = b4 = 1 ) 
and the starting function looks 
like as in the graph (pink-line) 
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After 22 iterations we get 
 

Parameter estimated certified rel. error 
b1 0.19244996595 0.19280693458 1.85E-03 
b2 0.19897040739 0.19128232873 4.02E-02 
b3 0.12439228242 0.12305650693 1.09E-02 
b4 0.13968006879 0.13606233068 2.66E-02 
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The algorithm begins to converge. Restarting the macro and continuing for two or 
three times we finally reach an average accuracy of about 1E-9 for the following 
parameter values: 
 

Parameter estimated certified rel. error 
b1 0.19280693445 0.19280693458 6.73E-10 
b2 0.19128233120 0.19128232873 1.29E-08 
b3 0.12305650713 0.12305650693 1.64E-09 
b4 0.13606233187 0.13606233068 8.78E-09 

 
The final plot having these parameters is shown in the graph below 
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Example 5 (Multi variable regression) 
Find the 3D centred elliptical surface that best fits a given dataset 
The implicit equation defining the 3D elliptical surface is 

1   222 =++ zcybxa  
 
The data set to fit is in the range A2:D9. Insert the model in each row of the range 
E2:E9. For example, the cell E2 contains the following function definition: 

=$A$12*A2^2+$B$12*B2^2+$C$12*C2^2-1 
 

 
 
Insert the starting point in the range A12:C12, for example (1, 1, 1) that is a sphere of 
unitary radius. Select A12:C12 and give "Run".  The macro will converge to the 
solution (2, 5, 1) 

1 5 2 222 =++ zyx  
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Gaussian regression 
Gaussian regression is a symmetrical exponential model useful for many applications.  
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Three parameters determine 
completely the Gaussian 
function 
 
a = amplitude 
b = axis of symmetry 
c = deviation or spread 
 
By inspection of the plot, it is 
quite easy to recognize and 
evaluate these parameters:   

 
 
The axis of symmetry "b" is the abscissa where the function has its maximum 
amplitude of "a". The deviation "c" is the length where the function is at 37 % of its 
maximum value. 
 
Usually the data are affected by several errors that "mask" the original Gaussian 
distribution. In that case we can use the regression method to measure how the row 
data fit the Gaussian model and to evaluate its parameters. 
 
Example. Let's see a 
hypothetical data set (x, y) 
where the x values of the 
data are distributed 
between 98 and 102  
The characteristic "bell" 
distribution is still evident. 
Near the point x = 100 the 
distribution has its 
maximum of about  
ymax ≅ 1 
Deviation is less easy to 
interpret because of the 
error, but a rough 
estimation gives us the 
value  of 0.75 
 

0

0.2

0.4

0.6

0.8

1

1.2

97.5 98 98.5 99 99.5 100 100.5 101 101.5 102 102.5

 
 
 
Now performing the Gauss regression with the Optmiz.xla addin. 
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Select the range of data 
(x, y) or simply select the 
first cell A6 of x data and 
start the macro  
>Gaussian< of the 
menu 
>Non-linear 
regression< 
 
 
Select the first cell E6 
where you want to output 
the parameters, and 
press Run 

 
The parameter found will be. 
 
 

 
If we plot the 
Gaussian model with 
those parameters 
over the above 
scattering plot we can 
observe a good fit. 
 
 
 

  
a = 1.00263 
b = 100.0006 
c = 0.69677 
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Rational regression 
Rational formulas could be used to approximate a wide variety of functions. But the 
mainly profit happens when we want to interpolate a function near a "pole". Large, 
sharply oscillations of the system responce could be followed better using a rational 
model instead other models like polynomials or exponentials. 
A rational model is a fraction of two polynomials. The max degree of one polynomial 
gives the degree of the rational model. Usually, in modelling of real stable systems, the 
denominator degree is always greater then the numerator. 
The following models have respectively 1, 2 and 3 degree. 
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The macro Rational from the menu NL- Regression allows to set separately the 
numerator and denominator degree. 
Exanple 
 

 
 
In the previous example we have set 
the numerator degree = 1 and he 
denominato degree = 2 
The macro outputs the coefficients: 

Numerator: a0 = 2, a1 = 0 
Denominator: b0 = 2, b1 = 0 , b2 = 1 
 
So, the best fitting rational regression 
model is 

                    22
2
x+
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When using the rational model 
The rational model is more complicate then polynomial model. For example a 3 degree 
rational model has 6 parameters, while the polynomial model of the same degree has 
4 parameters. 
Far from the "pole", the rational model takes no advantage over the polynomial model. 
Therefore they should be used only when it is truly necessary. 
The scatter plot of the dataset can helps us in choosing the adapt model. A typical plot 
that increase or decrease sharply often detects the presence of a "pole" and a 1st 
degree rational model could be sufficient; on the other hand, if the plot shows a narrow 
"peak" probably the better choice would be a 2nd degree rational model. 
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Usually also the inquiry of the system characteristic from witch the samples are given 
could be help us to choose a suitable rational model degree.  
 
Example. The following data was derived from a frequency response of a one-pole 
system. Find the best fitting model and estimate the pole. 
  

x y 
0.5 0.4877814 
0.6 0.5978195 
0.7 0.4539886 
0.8 0.4725799 
0.9 0.5267415 

1 0.53705 
1.1 0.7518795 
1.2 0.6314435 
1.3 0.8182817 
1.4 0.804856 
1.5 0.8759378 
1.6 1.0459817 
1.7 1.1395459 
1.8 1.1503947 
1.9 1.4471687 

2 1.752384 
2.1 2.0726757 
2.2 2.4904918 
2.3 3.3956681 
2.4 5.0324014 
2.5 10.056427 

y = 5.975x4 - 31.287x3 + 57.945x2 - 43.833x + 11.813
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The given data set are interpolated with a 1st degree rational function. 
The fitting appears good. The pole is the root of the denominator: 

       x −2.6 = 0  ⇒   x = 2.6 

Compare the accuracy and the simplicity of this rational model respect 
to the one obtained by fitting with a 4th degree polynomial (dotted line) 
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Frequency response of 2nd degree systems often shows a "peak" due to a resonance 
condition.  
In this situation rational regression is the only accurate way to fit the data. Compare 
the regression below obtained with a 2nd degree model (pink line) with the polynomial 
regression of 6th degree (dotted line) 
The superiority is evident 
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Rational regression gives good results also when same poles is located inside the 
dataset range. In the following example the dataset is sampled from the function 

2
1)( 2 −

+
=
x
xxf  

 
There is a poles near x = 1.414 but the regression fits very well the same. 
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Exponential regression 
Exponential relations are very common in the real world. Usually they appear together 
with oscillating circular function sine, cosine. In this chapter we investigate the 
regression of a simple exponential and sum of exponentials.  
 
Simple Exponential model 
The simplest exponential model is     

y = A e k x 
Many books at this point suggest to transform this nonlinear function into a "linearized" 
one and then apply the linear regression to this new model. The linearization can be 
made taking the logarithm of sample yi 
 
Linearization of the exponential model 

ixk
i eAy ⋅⋅=  

Taking the logarithm for each side, we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ii
xk

i
xk

i xkAyeAyeAy ii ⋅+=⇒+=⇒⋅= ⋅⋅ loglog    logloglog     loglog  
So we obtain the linear function 

ii xbbz ⋅+= 10  

Where:                             ( ) ( ) kbAbyz ii === 10    ,   log   ,    log  
 
Performing the linear regression for this model we get the parameters (b0 , b1 ) and 
finally the original parameter of the nonlinear function (A , k) by these simple formulas 

1
    ,   0 bkeA b ==  

This method is quite popular but we have to put in evidence that this method could fail. 
In fact this is not a true "least squares nonlinear" regression, but a sort of quick 
method to obtain an approximation of the true "least squares nonlinear" regression. 
Sometime the parameters obtained by the linearization method are sufficiently close to 
those of the NL-LS (Non-Linear Least Squares) method; but sometime not and 
sometime could gives values completely different. So a good technique, always valid 
to check the result, is to calculate the residuals of the regression. If the least squares 
of the residual are too high the linearized regression must be rejected.  
Sometime, the parameters obtained by the linearized method could be used as 
starting point for the optimization algorithms performing the true NL-LS regression, like 
the Levenberg-Marqaudt macro of the addin Optimiz.xla 
Now let' see this example of exponential regression. 
 

x y 

0.1 7.9 

0.2 7.1 

0.3 5.5 

0.5 4.1 

1 1.3 

1.5 0.6 

3 0.3  

We have to fit the given data point with an exponential 
model 
We perform the regression using the linearized method and 
the NL-LS Exponential method.  
In Excel we can use the function LOGEST for the first 
method and use the macro "Exponential Regression" of 
Optimiz.xla addin for the second method 
 
 

 
A possible arrangement in an Excel sheet could be the following 
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the parameter obtained 
are 
k1 = −1.1945 
a1= 6.9527 
 
giving the following 
exponential fitting 
function 
 

xkeay 1
1=  

 
The column y^  contains 
the values obtained by 
the above model 
 

 
 
Now perform the regression of the same data with a true NL-exponential regression.  
Insert the data (x,y) in range A4:B10 and the parameter a1 , k1 in the range F4:F5. 
Assume the starting point the value given by the above regression k1 = -1.19  
 a1 = 6.95.  Select the range A4:B10 and start the macro "Exponential" of the menu 
"NL Regression" 
 

 

Fill the input box with 
the range F4:F5 and 
select 2 in the 
parameters input box. 
This means that we 
have chosen the 
following 2-parameters 
model 
 

xkeay 1
1=  

 
 
We can also choose to 
output the regression 
values in the column 
C4:C10. 
 
If we check the "add 
formula" the macro 
inserts directly the 
regression formula into 
the output cells. 
 

 
After a while the macro finds the two new optima values a1 = 9.75  , k1 = -1.83 that 
are quite different form those obtained by the linearized method 
 
Now let's to compare the two regressions obtained 
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The NL-LS exponential 
regression y* (pink-line) 
fits the data set much 
better than the linearized 
exponential regression y^ 
(dotted line). 
 
The superiority is evident 
also by simple inspection 
of the graph 
 
 

 
The difference between linearized and true NL-LS regression exists for all models: 
logarithm, exponential, power, etc) but the difference may be so evident only for 
exponential functions. For other models the difference is always very low. 
There is another reason to dedicated many attention to this important but tricky 
regression  
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Offset 
Curiously the presence of the simple offset vanish completely the linearization method. 
When the offset increase respect to the amplitude parameter, the linearized regression 
becomes much more inaccurate. The only way in this case is the NL-LS regression 
method with the model 

xkeaay ⋅⋅+= 10  
Let's see the following example where the data set are generated from the function 10 
e-x  adding the offset 30 and a bit of random noise 
 

y = 33.043e-0.0213x

29

29.5

30

30.5

31

31.5

32

32.5

33

33.5

34

0 1 2 3 4 5 6

y = 30+10 e-x

 
 
The regression function obtained by the linearization method is completely wrong 
(dotted line). The parameters obtained are k = −0.023  and a = 33  
On the contrary the parameters obtained by the true NL exponential regression are: 
 a0 = 30.03, a1 = 10.23, k1 = -1.02, giving a fitting (pink line) much more accettable. 
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Multi-exponentials model 
The effort for finding a good fitting with a model having two or more exponentials 
grows sharply. the key of the success is a good starting parameter set. 
Let's try with the following general two exponential model having 5 parameters 

xkxk eaeaay ⋅⋅ ⋅+⋅+= 21
210  

 
The scatter plot of the data set (xi,yi) is showed in the dotted line (blue) in the following 
graph. A reasonable starting point may be taken with the following observation: 
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1) for x >> 0, the curve tends to the 
value y -> 0.4; therefore we set  
a0 = 0.4 
2) for x = 0, is y(0) = a0 + a1 + a2 . 
Therefore  a2 = y(0) -a0 -a1 
Taking a1 = 1 ,  we get a2 = -1.4 
 
Assume the exponential constants k1 
and k2 negative and very different 
each other: for example take: 
 k1 = -1 , k2 = -10. 
 

 
With this (rather drastic) assumptions we take the following starting parameters 

a0 = 0.4, a1 = 1 , k1 = -1, a2 = -1.4, k2 = -10 

which the relative regression function is plotted in the above graph (pink continue line). 
Start the macro exponential regression, fill correctly the input-box and set the 5th 
parameters model. We get the final parameters of the exponential regression. 
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a0 = 0.35, a1 = 4.65 , k1 = -1.5,  

a2 = -5, k2 = -2.6 
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Good fitting is good regression ? 
It is the object of the regression to condense and summarize the behaviour of a 
system by a set of measurements. Usually this is done by a mathematical function- 
also called "model" - that depends on adjustable parameters. The number of 
parameters depends by the model complexity; examples of parameters are: growth-
rate, concentration, time-decay, pollution, frequency response, etc. 
When the model parameters are close to the "true" unknown parameters of the 
system, the experimental data are much close to those extrapolate from the model. 
This good fitting represents a good agreement between the data and the model. It is 
also reasonable to think that a good fitting also represent a good estimation of the 
unknown parameters. It seems reasonable but unfortunately this is not always true, 
and it happens overall in exponential model. In other words we may have a good fitting 
without having a good regression model. 
This means that we could use the model for predicting the values but not for 
investigating the internal parameter of the system. 
 
This simple example shows the concept.  
Assume to have an electric system that can be modelled with a 2nd order linear-
differential equation. 
This induces us to model its response as a sum of 2 exponentials. Assume to have 
obtained by three different methods the following three models 

    
xkxk eaeaay ⋅⋅ ⋅+⋅+= 21

210  
 

a0 a1 k1 a2 k2 
3 -4 -0.2 10 -1 

1.9 -33 -0.66 40 -0.77 
0.22 0.25 0.33 8.5 -1.1 

 
At the first sight they are completely different: not only in the exponential amplitudes ( 
a1 changes from −33 to 0.25 , and a2 from 8.5 to 40) but also in the constant decay 
factors (k1 changes from −4 to 0.33 becoming positive) 
 
But if we plot all these curves we 
surprisingly observe that they fit each 
others so good that we cannot 
distinguee their plots! 
We can use one of the models to 
interpolate the points with good 
accuracy but we could get completely 
wrong information if we try to make 
same consideration of the system 
itself. For example we could predict a 
potential instability observing the 
positive exponential of the 3rd model 
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On the other hand, if we take good the 1st model, we would believe in a good stability 
being the damping factor about -1 and -4. 
But where is the true? As we can see, the consideration about the original system, that 
is the main goal of the regression, in that case, could be completely wrong.  
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Damped cosine regression 
That is a very common behaviour of a 2nd order real system. The responce oscillates 
around a final value with amplitude decreasing with the time. 

( )θω ++= teaay t  cosk 
10  

This model has 5 parameters 
 

a0 offset or final value 
a1 amplitude. 
k damping factor. 
ω pulsation  (2π f ) 
θ phase 

 
Related to this model is the following one, called "damped-sine-cosine" 

( ) ( )( )tbtbeay sc
xk  sin cos0 ωω ++= ⋅

 
where :    sin    ,   cos 11 θθ abab sc −==  
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The parameters found are: 
 
offset 1 
amp. 1 
damp. -1 
puls. 6.283 
phase 0  
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Usually the noise mask the 
original function. In this case 
we have added 20% of 
random noise 
The values found are still very 
closed to the original 
parameters and the fitting 
looks also good: 
 
offset 0.997 
amp. 1.032 
damp. -0.974 
puls. 6.259 
phase 0.054  
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Power regression 
The simple model of this regression is 

kxay ⋅=  
with x ≥ 0  and  k >0, a >0. 
 
When k < 0 the model becames 

kx
ay −=

 
 
with x > 0  and  a > 0 (x must be strictly positive) 
 
Usually this model is used to estimate the growth-rate or decay-rate of a population. 
We distingue the followinh cases of the exponent parameter k: 
 
Case  k > 1 
The power fitting is very closed to 
the polynomial fitting when the 
exponent is positive and greater 
than 1  ( k > 1) 
In the right example we can see the 
polynomial fitting (dotted-line) 

                y = 0.3 x2 + 0.5 x 

and the power function fitting (pink-
line) 

                y = 0.7 x 1.65  

They are very closed each others. 
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Case 0 < k < 1 
When the exponent k is positive and 
lower then 1 , the polynomial model 
is unsuitable and the power model 
should be used. 
In the right example we can see the 
polynomial fitting (dotted-line) 

         y = -0.073 x2 + 0.63 x 

and the power function fitting (pink-
line) 

          y = 0.7 x 0.45  

Only the power function can fit 
correctly the given data points.  
 

y = -0.0731x2 + 0.6294x
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y = 0.7 x 0.45

The difficult of the polynomial regression is located near the origin where the derivative 
grows sharply, becaming infinite for x = 0. Any polynomials, having no singular point, 
cannot follow the curve near this point. If we would have a dataset far from the singular 
point x = 0 , also polynomial regression would be better. 
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Case k < 0 
When the exponent k is negative 
the power fitting should be used. 
Also a logarithmic regression 
could be used. 
In the right example we can see 
the logarithmic fitting (dotted-line) 

                y = -0.27 log(x) + 0.74 

and the power function fitting 
(pink-line) 

                y = 0.7 x −0.33  

 

y = -0.2789Ln(x) + 0.7422
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y = 0.7 x - 0.33

 
 
Logarithmic regression 
Strictly related to the power fitting is the logarithmic regression. 

bxay += )log(  
Where "a" and "b" are parameters to determine. 
We performs this kind of regression when we have dataset sampled over a wide 
interval range 
 
For example the following dataset cames from the armonic analysis of a system. The 
vibration amplitude, was measured at 10 different frequencies, from 0.1 KHz to about 
2000 KHz 
We usually plot this dataset with the help of a half-logarithm chart, and thus, it is 
reasonable to assume also a logarithm regression 
 
 

 
 

x (KHz) y (dB) 
0.1 5.334 
0.3 3.791 
0.9 2.233 
2.7 -0.286 
8.1 -1.088 

24.3 -1.868 
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1968.3 -10.027 -12

-10
-8

-6

-4
-2

0

2

4
6

8

0.1 1 10 100 1000 10000

y = -1.5 Log(x)+2
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NIST Certification Test 
The Levenberg-Marquardt macro was recently tested completely with the non-linear NIST 
StRD dataset. 
In this test we have used the approximate derivative. For same dataset we have restarted 
the macro 2 times. When the macro fails the convergence from the 1st starting point, we 
have started the macro using the 2nd starting point provided by NIST. 
The test result - the minimum LRE for all regressors - is reported in the following graph, 
compared with the the Solver of Excel 97 
 

Equation Class NIST 
Num. 

NIST 
Name 

NIST 
Level 

Excel 
Solver 

Optimiz 
2.0 

 
Simple Exponential 38 Misrala Lower 4.8 11.1  
Simple Exponential 39 Chwirut2 Lower 4.6 10.4  
Simple Exponential 40 Chwirut1 Lower 4.9 10.5  
Complex Exponentials 41 Lanczos3 Lower 0 8.4  
Complex Exponentials 42 Gauss1 Lower 0 10.4  
Complex Exponentials 43 Gauss2 Lower 0 9.8  
Algebraic 44 DanWood Lower 5.5 11.1  
Algebraic 45 Misralb Lower 4.4 12.1 (+) 
Algebraic 46 Kirby2 Average 1.1 11.4  
Algebraic 47 Hahn1 Average 0 9.8 (+) 
Simple Exponential 48 Nelson Average 1.3 8.7 (*) 
Simple Exponential 49 MGH17 Average 0 10.2 (*) (+) 
Complex Exponentials 50 Lanczos1 Average 0 10.6  
Complex Exponentials 51 Lanczos2 Average 0 10.0  
Complex Exponentials 52 Gauss3 Average 0 10.4  
Algebraic 53 Misralc Average 4.6 10.9  
Algebraic 54 Misrald Average 5.3 12.5  
Trig Function 55 Roszmzn1 Average 3.7 10.0  
Algebraic 57 MGH09 Higher 0 9.5  
Algebraic 58 Thurber Higher 1.8 9.3 (+) 
Simple Exponential 59 BoxBOD Higher 0 11.5 (*) 
Simple Exponential 60 Rat42 Higher 5.3 11.4  
Simple Exponential 61 MGH10 Higher 0 9.6 (*) 
Simple Exponential 62 Eckere4 Higher 0 9.3 (*) 
Simple Exponential 63 Rat43 Higher 0 9.7 (*) 
Algebraic 64 Bennett5 Higher 0 8.2  

 
(*) start from 2nd NIST point,  (+)  2nd restarting 
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Nonlinear Equations Systems 
Nonlinear Equations Systems 
Nonlinear Equations Systems 
Optimiz has a set of macros called rootfinding algorithms concerning the numerical 
solution of systems of Non-Linear Equations (NLEs). 
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Minimizing versus Rootfinding Strategy 
We observe that this problem can be reformulated as the minimization of the function 

∑
=

=
n

i
in fxxx

1

2
21 )...,(φ  

 
If we are interested in pursuing this solution strategy, we can adopt all the minimization 
algorithms contained in this addin but be aware that it is as likely to fail as often as it 
works, for the following reason. While every root of the system F(x) = 0 is a global 
minimum of the function φ , there also exist local minima which are not roots of the 
system. A minimization algorithm is as likely to converge to a local minimum as to a 
global one, so an abundance these local minima may render such an algorithm 
practically useless for finding the roots of F(x) . 
In addition there is another good reason that suggest to use a dedicated rootfinding 
algorithm for solving the system F(x) = 0; its solution is generally more accurate than 
the solution obtained by minimization algorithms. On the other hand the minimization 
algorithms usually shows better convergence performance, therefore, often, the two 
strategies are used together 
 

Chapter 

4 
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NL Equation macros 
The rootfinding algorithms contained in this addin are: 
 
Newton-Raphson  
This algorithm is the prototype for nearly all NLE solvers. The 
method works quite well. In the general case, the method 
converges rapidly (quadratically) towards a solution. The 
drawbacks of the method are that the Jacobian is expensive to 
calculate, and there is no guarantee that a root will ever be 
found unless your starting value is close to the root. This 
version adopts a relaxation strategy to improve the 
convergence stability 
 

 
Working on site. 
 

Broyden  
This is a so called  Quasi-Newton (Variable Metric) method .It 
avoids  the expense of calculating the Jacobian providing a 
more fast and cheap approximation by generalization of the 
one-dimensional secant approximation.  
 

Working on site. 

Brown  
The algorithm is based on an iterative method which is a 
variation of Newton's method using Gaussian elimination in a 
manner similar to the Gauss-Seidel process.  Convergence is 
roughly quadratic.  All partial derivatives required by the 
algorithm are approximated by first difference quotients. 
The convergence behavior is affected by the ordering of the 
equations, and it is advantageous to place linear and mildly 
nonlinear equations first in the ordering. 
 

Working on site. 
 

Global  
This macro attempts to find all the solutions in a given range by 
an hybrid process of 2 algorithms: random sampling and 
Newton- Maehly method for zeros suppression. Differently from 
other the macros It does not work on site and It does not need 
any starting point. 
It outputs the list of the roots found (if any) 
 

List of roots 

1D Rootfinder miscellanea 
17 popular algorithms for finding roots of univariate equation  
 

Working on site 
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NLE - Newton-Raphson 
Solves a system of nonlinear equations using the Newton-Raphson relaxed method 
Example assume the root of the following system is to be found 





=+
=⋅⋅−− −

0/1
0102)840/( 56

yx
yyx

 

 
In order to locate the root in the plane we use the contour method. The contour plots of 
the two equations are show in the following graph 
 

 

The intersection is located in the 
range: 
0 < x < 0.005 and 200 < y < 400 

 
We can arrange the problem in a worksheet. 
Insert the starting variable values (x0, y0) in the cells B3 and B4 (for example 0, 300) 
and insert the functions:   
=B3 -(B4/840)^6 -B4/200000 in the cell E3 and =B3-1/B4 in E4 respectively.  

Select the range E3:E4 containing the system to solve and start the macro Newton-
Raphson from the menu Optimiz... > NL Equation  
 

 
 
If you have followed this procedure the fields will be already filled correctly and you 
have only to press "run". After few iterations the solution will appear in the cells B3 and 
B4. 
Other setting are: 
Iteration Limit. In the panel there is always an input box for setting the maximum 
number of iterations allowed. The macro stops itself when this limit has been reached. 
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Residual Error: The input box sets the error limit of the residual error defined as: max{ 
|fi(x)| }. 
 
Relax: Switches on /off the relaxation strategy. If disabled the simple traditional 
Newton-Raphson algorithm is used. If enabled the macro exhibits a better global 
convergence behaviour. In any case this parameter does not affect the final accuracy. 
 
Trace: Switches on /off the trace of the root trajectory. If selected, the macro opens an 
auxiliary input box requiring the cell where the output will begin 
 

 
 

 
 
Example. Find the numerical solution of the following NL system 
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
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− 0)cos(2

01565 22

y
yxyx

x π  

 

 
The plot method shows clearly that there are 
two intersection points between the curves. 
We estimate the first solution near (0.5, 0.3) 
and the second solution near (0.3, -0.2). 
They are a raw estimation but they should be 
sufficient close to start the Newton algorithm 
with a good chance 

 
 
Insert the starting variable values (0.5, 0.3) in 
the cells B2 and B3 and insert the functions:   
=2^(-B2)-COS(PI.GRECO()*B3) in the cell B5 and 
= 5*B2^2-6*B2*B3+5*B3^2-1 in B6 respectively. 
Select the range B5:B6 and start the macro  

Repet with the starting values (0.3, -0.2) 

 
 

The solutions are: 
 

 x y 
1 root 0.299376925061096 -0.198049648152025 
2 root 0.552094992004132 0.261097771471505 
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NLE - Broyden 
Solves a system of nonlinear equations using the Broyden method 
Example assume the root of the following system is to be found 
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The contour plots of the two equations are show in the following graph 
 

 

The 4 intersections are symmetric 
respect to the origin.  
One of these is located in the 
range: 
 
 1 < x < 2 and 1 < y < 2 

 
We can arrange the problem in a worksheet. 
Insert the starting variable values (x0, y0) in the cells A5 and B5 (for example 1, 2) and 
insert the functions:  = A5^4+2*B5^4-16 in the cell C5 and = A5^2+B5^2-4 in D5 
respectively. 
 
Select the range C5:D5 containing the system to solve and start the macro Broyden 
from the menu Optimiz... > NL Equation  
 

 
 
If you have followed this procedure the fields will be already filled correctly and you 
have only to press "run". After few iterations the solution will appear in the cells A5 and 
B5. 
 
Other settings 
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Iteration Limit. In the panel there is always an input box for setting the maximum 
number of iterations allowed. The macro stops itself when this limit has been reached. 
 
Residual Error: The input box sets the error limit of the residual error defined as: max{ 
|fi(x)| }. 
 
Trace: Switches on /off the trace of the root trajectory. If selected, the macro opens an 
auxiliary input box requiring the cell where the output will begin 
 
 
Example. Find the numerical solution of the following NL system 
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The plot method shows clearly that there 
are only one intersection point between 
the curves. We estimate the solution 
near (0.5, 0.5). 
It should be sufficient close to start the 
Broyden algorithm with a good chance. 

 
 
Insert the starting variable values(0.5, 0.5) in the 
cells B2 and B3 and insert the functions:   
= B2*B3+B2^1.2+B3^0.5-1 in the cell B5 and  
= EXP(-2*B2)+B3-1 in B6 respectively.  
Select the range B5:B6 and start the macro  
 

 
 

The solution is: 
 

 x y 
1 root 0.283157364898325 0.432386602268468 
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NLE - Brown  
Solves a system of nonlinear equations using the Brown method 
Example assume the root of the following system is to be found 
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The contour plots of the two equations are show in the following graph 
 

 

There are 4 intersections.  
One of these is located in the 
range: 
 
 1 < x < 3 and 2 < y < 4  
and  
we may choose the starting point 
x0= 2, y0 = 4 
 
 

 
We can arrange the problem in a worksheet. 
Insert the starting variable values (x0, y0) in the cells B3 and B4 (for example 1, 4) and 
insert the functions:   
= B3^4 + 3*B4^2 - 8*B3 + 2*B4 - 33 in the cell E3 and  
= B3^3 + 3*B4^2 - 8*B3*B4 - 12*B3^2 + B3 + 59 in E4. 
 
Select the range E3:E4 containing the system to solve and start the macro Brown 
from the menu Optimiz... > NL Equation  
 

 
 
If you have followed this procedure the fields will be already filled correctly and you 
have only to press "run". After few iterations the solution will appear in the cells B3 and 
B4. 
Repeating with the starting points (x0,y0) = (3, 0),  (x0,y0) = (-2, 0.1),  (x0,y0) = (-2, -2) 
we get all the system solutions 
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Other settings 
 
Iteration Limit. In the panel there is always an input box for setting the maximum 
number of iterations allowed. The macro stops itself when this limit has been reached. 
 
Residual Error: The input box sets the error limit of the residual error defined as: max{ 
|fi(x)| }. 
 
Trace: Switches on /off the trace of the root trajectory. If selected, the macro opens an 
auxiliary input box requiring the cell where the output will begin 
 
 
Example. Find the numerical solution of the following NL system 
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The plot method shows clearly that there 
are only one intersection point between 
the curves. We estimate the solution 
near (0.5, 0.1). 
It should be sufficient close to start the 
Brown algorithm with a good chance. 

 
 
Insert the starting variable values (0.5. 0.1) 
in the cells B2 and B3 and insert the 
functions:  = 2*B2+COS(B3)-2 in the cell B5 
and = COS(B2)+2*B3-1 in B6 respectively. 
Select the range B5:B6 and start the macro 

 
 
The solution is: 

 x y 
1 root 0.5009432689266 0.0614350278365069 
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NLE - Global rootfinder 
This macro attempts to finds all roots of a nonlinear system in a given space range 
using the random searching method + the Newton- Maehly formula for zeros 
suppression. 
This macro works inside a specific box range and does not need any starting point. 
It is quite time expensive and, like other rootfinder algorithms, there is no guarantee 
that the process succeeds. If the macro takes too long try to reduce the searching 
area. 
Example assume the root of the following system is to be found 
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The contour plots of the two equations are show in the following graph 

 

There are 4 intersections 
located in the box range 
 

44  ;   44 ≤≤−≤≤− yx  
 
 

 
We can arrange the problem in a worksheet. In order to speed up the input filling , this 
macro assumes the following simple schema: 
 

 
 
Insert the functions:  
= B3^2 - C3^2 + B3*C3 - 1   in the cell D3  
= B3^4 + 2*C3^4 + B3*C3 - 16    in E3. 

Select the range D3:E3 containing the system to solve and start the macro Global 
from the menu Optimiz... > NL Equation  
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If you have followed this procedure the fields will be already filled correctly and you 
have only to press "run" . The macro begins to search for the roots and lists each root 
found in the cell starting from B8. Because the algorithm proceeds randomly, the roots 
may appear in any order. 
The macro stops when it cannot find anymore roots. 
 
Other settings 
 
Trials. sets the maximum number of random trials allowed for the global searching. 
For example if the number is 100 (default) then the algorithm samples a random 
starting point inside the given range at the most for 100 times. This means that, at the 
most, the macro could find 100 different roots (of course if any trial succeeds) 
 
Iteration Limit. sets the maximum number of iterations allowed for each root. When 
the algorithm overcomes this limit the trial fails and another starting point is sampled. 
 
Fails: sets the limit for the stopping criteria. The number 10 (default) means that the 
macro stops itself when it fails consecutively more than 10% of the total trials. 
 
Data Output  
The macro output the roots and also other interesting data related to each root 
 

 
 
err = residual max. error at the current root 
iter = number of iterations used for finding the current root 
trial = number of the trial when the current root was found 
 
In the above example we see that the the first tow roots were found consecutively at 
the 1st and 2nd trial, the the algorithm fails the 3rd trial and found the 3rd root at the 
4th trial using 24 iterations. After that it fails the trials 5, 6 and 7.  Finally it found the 
last 4th roots at the 8th trial using no more than 7 iterations. 
 
Single equation 
Of course this macro can be used for finding all the root of a single equation 
Let's see. 
Find all the roots (if any) of the following equation 

0
4

)cos( =+⋅
xxπ  

 
Plotting the equation we note that the roots are located in the range  55 ≤≤− x   
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The number of the roots should be 8, at the least 
We can arrange the problem in the following way  
 

 
 
The function =COS(PI.GREEK()*A3)+1/4*A3  is inserted in the cell D3 
Select the cell D4 and start the macro Global 
 

 
 
 
The macro lists 9 roots.  
The two roots x7 = -4 and x9 = -3.949 are realy 
very hidden but they can be evidenced by 
zooming around the point  x = 4.  
As we can see the two distinct roots are 
confirmed  
 
Solving problem "on site", thus directly on the worksheet cells,  is more slow then 
solving by VBA program but, on the other hand, is more flexible because we can use 
practically all the Excel and user functions that we have. 
Let's see the following equation 
 
Example. Find all the roots of the following equation with the Bessel functions of 1st 
and 2nd kind 

0)4(Y)(J)(Y)4(J 1001 =− xxxx  
 
By the graph we observe that the roots are infinite; the first 10 roots are located in the 
range 100 << x . Note also that the equation is not defined for 0≤x   
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We can arrange the problem in the following way  
 

 
 
The function 

=BESSEL.J(4*B5;1)*BESSEL.Y(B5;0)-BESSEL.J(B5;0)*BESSEL.Y(4*B5;1) 

is inserted in the cell E5. Now select this cell and start the macro Global 
Set a reasonable number of trial (for example 200) and give "start" 
 

 
 
In a few seconds the algorithm has found all the ten roots. Note that the most difficult 
root to find has been the root 8 = 0.3934562. The algorithm has made 9 trials  
(24-15 = 9) before finding it. It usually happens when a root is near to same singular 
point (in that case is x = 0). 
 
More variables 
Solving equations with 3 or more variables may be 
very difficult because generally we cannot use the 
graph method. As we have seen it is necessary to 
locate the space region where the roots are with 
sufficiently precision. Or, at the least, have an idea 
of the limits where the variables can move. This is 
necessary for setting the constraints box. 
The variable bounding can be often discover by 
examining the equations of the system itself.  
 
Example. Find the solution of the following system 
 









=−++
=−++
=−++

07.12coscos
08.1cos2cos
09.1coscos2
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Let's try to find the variable range. For this, we explicit the variable x from the 1st 

equation, y from the 2nd and z from the last equation. 
We have: 
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Because the function cosine is bounded between -1 and 1 the lower and upper bounds 
for each variable will be 
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Of course the bounding could be more tight, for example -0.2 ≤ x ≤ 2. But, from our 
experimentation, the global searching algorithm works better if the constraints box is a 
bit larger than the one strictly necessary. 
We can arrange the problem in the following way. Insert in the cells: 
cell F2 = 2*B2+COS(B3)+COS(B4)-1.9 
cell F3 = COS(B2)+2*B3+COS(B4)-1.8 
cell F4 = COS(B2)+COS(B3)+2*B4-1.7 
The variables  x, y, z are the cell B2, B3, B4; the constraints box is inserted in the 
range C2:D4. Select the range F2:F4 and start the macro Global 
 

 
 
In a few second, the macro list the only solution 
 

Variables Solution 
x  -0.0423690502771721 
y -0.0941340004413468 
z -0.147337615888545 

 
Try to restart several times the macro by the "start" buttom. The algorithm will output 
the same solution. 
The same root will also confirmed by other rootfinder algorithms (Newton or Broyden, 
for example) starting from the point (0, 0, 0) 
 
 
Example. Find the solution of the following system 
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Let's try to find the variable range. We observe that the equations are "weakly" 
coupled. That is each equation ties only two variables and, thus, defines an implicit 
curves that we can plot in order to estimate the limit range of the variables. 
For convenience we plot the zero contour of the 2nd and 3rd equation  
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0423 22 =−+ zy  0622 22 =−++− xzzxx  

 
-2 ≤ y ≤ 2   ,   -2 ≤ z ≤ 2 -2 ≤ x ≤ 4   ,   -3 ≤ z ≤ 2 

 
Form the above graphs we can choose the lower limit  -2 and the upper limit 5 for each 
variable. This is a sort of "bracketing" of the system roots. 
 

 
 
We can arrange the problem in the following way. Insert in the cells: 
cell F2 = EXP(-B2)-B2*B3+B3^3 
cell F3 = 3*B3^2+2*B4^2-4 
cell F4 = B2^2-2*B2+2*B4^2+B2*B4-6 
The variables x, y, z are the cell B2, B3, B4; the constraints box is in the range C2:D4. 
Select the range F2:F4 and start the macro Global 
After a few seconds the macro will outputs the following list: 
  

Solution x y z err iter trial 
root1 3.92391459 0.00503673 -1.4142001 7.97E-19 6 1 
root2 1.75060021 0.09977314 1.40892441 6.43E-18 7 3 

 
Repeating the process we confirm the result. There are 2 roots in the given box that 
are all the possible solution of the given system  
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Univariate Rootfinding macro 
This macro solves a single nonlinear equation. The user can choose the method 
among a miscellanea of the most popular rootfinding algorithms. 
 
Example. Find the solution of the 
following equation 
 

01)sin(5.0 =−− xx  
 
From the plot we see that the only root 
lies surely between 0 and 4. 

 
 
The problem can be arranged as in the following schema. 
Insert the formula  =A3^0.5-SIN(A3)-1   in the cell D3 
 
Select the cell D3 containing the equation to solve and start the macro 1D-Zerofinder 
misc. from the menu Optimiz... > NL Equation 
 

 
 
In this example, we have obtained the numerical solution by the Pegasus algorithm in 
about 8 iterations with an accuracy better then 1E-15. But we may also try several 
other algorithms. 
 
Other settings 
 
Iteration Limit. In the panel there is always an input box for setting the maximum 
number of iterations allowed. The macro stops itself when this limit has been reached. 
 
Residual Error: The input box sets the error limit of the residual error defined as: max{ 
|fi(x)| }. 
 
Trace: Switches on /off the trace of the root trajectory. If selected, the macro opens an 
auxiliary input box requiring the cell where the output will begin. The first column 
contains the root value; the second column, the residual error  | F(x) |. 
 
Algorithm: By this combo-box the user can choose the rootfinding algorithm5 that he 
like among the following list 
 

                                                      
5 For further details about these methods see "Nonlinear Equations - Iterative Methods"  L. Volpi, 2006, 
Foxes Team 
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1 "Bisection" Bisection method 
2 "Pegasus" Pegasus (Dowell-Jarratt) 
3 "Brent" Brent hybrid method (Wijngaardern- Dekker-Brent) 
4 "Secant" Secant method 
5 "Halley" Halley method 
6 "Halley FD" Halley method with finite differences 
7 "Secant-back" Secant back-step method 
8 "Star E21" Star method (Traub E21) 
9 "Parabola" Parabola method 

10 "Parabola inv." Inverse parabola method 
11 "Fraction" Fraction interpolation method 
12 "Newton" Newton-Raphson method 
13 "Regula falsi" False position method 
14 "Chebychev FD" Chebychev-Householder method with finite differences 
15 "Muller" Muller method 
16 "Rheinboldt 2" Rheinboldt hybrid method 
17 "Steffenson" Steffenson method 

 
Algorithms 5, 12, 17 takes the starting value from the cell "x". The other algorithms 
start using the points "xmin" and "xmax" of the constraints range. 
 
They can be useful for studying and comparing the behavior of several algorithms  
Example: compare the error trajectories of the Secant, Newton and Halley algorithms 
applied to the equation 

06)3(4 =−+ +−− xee xx  
 

 
 
The one-point algorithms 
"Newton" and "Halley" start from 
the point inserted in the cell "x" 
(in that case is 0) 
The "Secant" algorithm starts 
using the limits xmin and xmax (in 
that case 0 and 1) 
The 2nd column of the each trace 
is the error |f(x)|.  We can 
compare the trajectories of each 
algorithm in the following graph. 
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2D - Zero Contour 
This macro solves the bivariate equation in a plane region x-y 

0),( =yxf  

As know the solutions form a curve called "zero-contour" or "zero-path" of the function 
f(x, y). Plotting these curves in a scatter graph we have many useful information about 
invertibility, intersections with other curves, etc. 
 
This macro search for all the points Pi (xi, yi) 
satisfying the given equation inside a given 
rectangular region. The points are distant from each 
other of a given step h in order to form a sort of 
equispaced path 

h

 

The macro outputs the list of the consecutive points [xi, yi] in two columns  
A zero contour may be formed by several trees. The macro outputs all the trees 
separated by an empty row. 
 
For example: find the zero-contour of the following equation 
 

1)110(),( 22 −⋅+= yxyxf  
 
Because we have no idea where the function has its zeros, we begin with a large 
searching region and we restrict successively the area in order to have a good 
positioning of the plot. 
Here we choose the rectangular range: 

11  ;   22 ≤≤−≤≤− yx  

Arrange the worksheet like the following and insert the function  
=(10*B4^2 + 1)^2 *C4^2 - 1 in the cell D4.  
Then select the cell D4 and start the macro 2D-Zero Path from the menu Optimiz... > 
NL Equation 
If you have followed the schema, all the input box will be correctly filled and you have 
to click "Start" for beginning the path finder. We can also stop the process if it takes 
too long. 
 

 
 
In this case the macro has found a path of by about 200 points in about 7 sec. 
Observe that each point is an high accurate numerical solution of the equation  

0),( =yxf  
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Plotting the data of the range  B9:C223 in a scatter x-y graph we get the folloging 
image 
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Note the there are two different trees, simmetrical respect to the x-axis (note also that 
the range B9:C223 is composed by two separated dataset: the first one in B9:C115 
and the second one in B116:C223. They are just the two paths of the zero-contour 
 
Other settings 
 
Trials. sets the maximum number of random trials allowed. For example if the number 
is 16 (default) then the algorithm samples a random starting point inside the given 
range for 16 times. This means that the macro could find at the most 16 different trees 
of the zero contour. 
 
Points: The input box sets the maximum number of the points allowed for all the 
contour, Increase this value if the contour is very long or has many trees. 
 
Step: Sets the space between two consecutive points of the path. Reduce the step 
only for very detailed paths but remember that the elaboration time will increase 
sharply. A simple row rule is taking about 1% of the maximum rectangular dimension. 
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Other curves 
 
Let's try to plot the zero path of the following equations: 
 

01|||| 3/23/2 =−+ yx  
 

0333 =−+ xyyx  
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02223 =+−+ yxxyx  
 

025166 2224 =+−− yxyxx  
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2D Intersection 
This useful macro extrapolates the intersection between two contours 

0),( =yxf   ,   0),( =yxg  

given as two sets of consecutive points (see the macro 2D - Zero Contour) 
 

 
 
This algorithm uses the linear interpolation to approximate the intersection. 
This task may be useful for finding an initial estimation of a nonlinear system solution 





=
=

0),(
0),(

yxg
yxf

 

Example: 
Find a numerical approximation of the solution of the following system 







=−++

=−−

02522
022
22

22

yxyx
yx

 

 
First of all, we get the zero-contour of each equation by the macro 2D zero contour. 
 

 
 
The data set of each path are in the range B10:C167 and D10:E104 respectively. 
This schema is not obligatory but help in filling the input box of the macro 
Select the first cell B10 and start the macro 2D Intersection from the menu Optimiz... 
> NL Equation 
If you have followed the above schema, all the input box will be correctly filled and you 
have only to click "Run"  
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The macro has found 4 intersection 
points 
 

xi yi 
-0.73892 -0.30292 
-0.81216 0.56474 
0.73898 0.30312 
0.81233 -0.56521 

 
Each value satisfies the given system 
with an accuracy of about 1E-3 (0.1%), 
sufficient for graphical representation or 
as starting point for other, more power, 
rootfinding algorithms (Newton, 
Broyden, Brown, etc.) 
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