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This method of interpolation was introduced in Hagan and West [2006], Hagan and West [2008].

1. Constructing yield curves

1.1. Curve fitting. There is a need to value all instruments consistently within a single valuation

framework. For this we need a risk free yield curve which will be a continuous zero curve (because

this is the standard format, for all option pricing formulae). Thus, a yield curve is a function

r = r(�), where a single payment investment for time � will earn a continuous rate r = r(�), that

is, a payment of 1 at initiation will be redeemed by a payment of exp(r(�)�) at time � .

As explained in Zangari [1997], Lin [2002] term structure estimation methods can be classified

into two groups: theoretical and empirical. Theoretical term structure methods typically posit an

explicit structure for a variable known as the short rate of interest, whose value depends on a set of

parameters that might be determined using statistical analysis of market variables. Early examples

of theoretical methods include Vasicek [1977] and Cox et al. [1985]. From such a method the yield

curve can be derived. Because the theoretical method is parsimonious, the yield curve will fall into

one of a few basic categories in terms of shape. In some circumstances, negative rates are possible.
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Empirical methods are available to compute spot interest rates. Unlike the theoretical methods,

the empirical methods are independent of any model or theory of the term structure. Whereas the

theoretical methods attempt to explain typical features of the term structure, which may include

how the term structure evolves through time, the empirical methods merely try to find a close

representation of the term structure at any point in time, given some observed interest rate data.

Later developments, in particular the approach of Hull and White [1990], allowed the use of a

empirically determined yield curve in a theoretical model. Furthermore, the classification scheme

of Heath et al. [1990] takes as input the same empirically determined yield curve. Thus, while the

practitioner has several choices for the theoretical model that will govern their evolution of the

yield curve, and hence govern their pricing of derivative products, they will almost certainly have

as starting point an empirically determined yield curve. This document is concerned with that task

of determining the yield curve, a process typically called bootstrapping. In fact, our treatment is

slightly more general, as it covers the construction of spread curves, forward curves, etc. as well.

As explained in several sources, for example Ron [2000], there is no single correct way to complete

the term structure of a yield curve from a set of rates. It is desired that the derived yield curve

should be smooth, but there must not be over-smoothing, as this might cause the elimination of

valuable market pricing information.

It may or may not be a criterion that all inputs to the yield curve should price back exactly after the

construction of the curve. If it is not a criterion, then almost surely one will favour the approaches

of Nelson and Siegel [1987] and Svensson [1994].

We consider the situation where it is required to price exactly. Certainly this approach is completely

feasible when bootstrapping a swap curve, it may or may not be feasible when bootstrapping a

bond curve, this will depend on the number of liquid bonds available in the market. Even when we

require that the curve perfectly replicates the price of the input instruments, the yield curve is not

constructed uniquely; we need to select an interpolation method with which to build the curve.

1.2. The yield curve. Much of what is said here is a reprise of the excellent introduction in

[Rebonato, 1998, §1.2].

Time is measured in years, with the current time typically being denoted t.

We have two basic functions: the capitalisation function and the discount function. C(t, T ) and

called the capitalisation factor: it is the redemption amount earned at time T from an investment

at time t of 1 unit of currency. Of course C(t, T ) > 1 for T > t as the owner of funds charges a fee,

known as interest, for the usage of their funds by the counterparty.

The price of an instrument which pays 1 unit of currency at time T - this is called a discount or

zero coupon bond - is denoted Z(t, T ). This is the present value function. A fundamental result in

Mathematics of Finance is (intuitively) that the value of any instrument is the present value of its

expected cash flows. So the present value function is important.

We say that 1 grows to C(t, T ) and Z(t, T ) grows to 1. If Z(t, T ) grows to 1, then Z(t, T )C(t, T )

grows to C(t, T ), and so

Z(t, T )C(t, T ) = 1.(1)

Note also that Z(t, t) = 1 = C(t, t). The next most obvious fact is that Z(t, T ) is decreasing in T

(equivalently, C(t, T ) is increasing).
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Suppose Z(t, T1) < Z(t, T2) for some T1 < T2. Then the arbitrageur will buy a zero coupon bond

for time T1, and sell one for time T2, for an immediate income of Z(t, T2)−Z(t, T1) > t. At time T1

they will receive 1 unit of currency from the bond they have bought, which they could keep under

their bed for all we care until time T2, when they deliver 1 in the bond they have sold.

6
Z(t, T2)

?
Z(t, T1)
0

6
1

T1

?

1

T2

Figure 1. The arbitrage argument that shows that Z(t, T ) must be decreasing.

What we have said so far assumes that such bonds do trade, with sufficient liquidity, and as a

continuum i.e. a zero coupon bond exists for every redemption date T . In fact, such bonds rarely

trade in the market. Rather what we need to do is impute such a continuum via a process known

as bootstrapping.

The term structure of interest rates is defined as the relationship between the yield-to-maturity

on a zero coupon bond and the bond’s maturity. If we are going to price derivatives which have

been modelled in continuous-time off of the curve, it makes sense to commit ourselves to using

continuously-compounded rates from the outset. The time t continuously compounded risk free

rate for maturity T , denoted r(t, T ), is given by the relationships

C(t, T ) = exp(r(t, T )(T − t))(2)

r(t, T ) =
1

T − t
lnC(t, T )(3)

Z(t, T ) = exp(−r(t, T )(T − t))(4)

r(t, T ) = − 1

T − t
lnZ(t, T )(5)

The rates will be known, or derived from a gentle model, for a set of times t1, t2, . . . , tn; let us

abbreviate these rates as ri = r(ti) for 1 ≤ i ≤ n. Suppose that the rates r1, r2, . . . , rn are known

at the ordered times t1, t2, . . . , tn. Any interpolation method of the yield curve function r(t) will

construct a continuous function r(t) satisfying r(ti) = ri for i = 1, 2, . . . , n. Various interpolation

methods are reviewed, and a couple of new ones are introduced, in Hagan and West [2006], Hagan

and West [2008]. In so-called normal markets, yield curves are upwardly sloping, with longer term

interest rates being higher than short term. A yield curve which is downward sloping is called

inverted. A yield curve with one or more turning points is called mixed. It is often stated that such

mixed yield curves are signs of market illiquidity or instability. This is not the case. Supply and

demand for the instruments that are used to bootstrap the curve may simply imply such shapes.

One can, in a stable market with reasonable liquidity, observe a consistent mixed shape over long

periods of time.

1.3. The shape of the curve. The shape of the graph for Z(0, t) does not reflect the shape

of the yield curve in any obvious way. As already mentioned, the discount factor curve must
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be monotonically decreasing whether the yield curve is normal, mixed or inverted. Nevertheless,

many bootstrapping and interpolation algorithms for constructing yield curves miss this absolutely

fundamental point.

Of the well known methods, only raw (linear rt) takes this point into consideration, almost by

construction. Any variation of Hermite interpolation - this is very popular - miss this point. The

monotone convex methods introduced in Hagan and West [2006], Hagan and West [2008] take this

point into account explicitly. In Figure 3 we find some rather odd looking curves; these curves

Figure 2. Some yield curves and their discount functions

were found in the mark to market system of a bank. In the SB curve, the bootstrap has failed to

guarantee that the Z(0, t) function is decreasing.

Figure 3. Some more yield curves and their discount functions: the second is

illegal, because the Z(⋅) curve is not decreasing.

Interestingly, there will be at least one class of yield curve where the above argument for a decreasing

Z function does not hold true - a real (inflation linked) curve. Because the actual size of the cash

payments that will occur are unknown (as they are determined by the evolution of a price index,

which is unknown) the usual arbitrage argument does not hold. Thus, for a real curve the Z function

is not necessarily decreasing (and empirically this phenomenon does on occasion occur).
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1.4. Instantaneous Forward rates. Using continuous rates, the forward rate governing the period

from t1 to t2, denoted f(0; t1, t2) satisfies

exp(−f(0; t1, t2)(t2 − t1)) = Z(0; t1, t2) :=
Z(0, t2)

Z(0, t1)

Immediately, we see that forward rates are positive (this is equivalent to the discount function

decreasing). We have either of

f(0; t1, t2) = − ln(Z(0, t2))− ln(Z(0, t1))

t2 − t1
(6)

=
r2t2 − r1t1
t2 − t1

(7)

Let the instantaneous forward rate for a tenor of t be denoted f(t), that is, f(t) = lim�↓0 f(0; t, t+�),

for whichever t this limit exists. Clearly then

f(t) = − d

dt
ln(Z(t))(8)

=
d

dt
r(t)t(9)

So f(t) = r(t) + r′(t)t, so the forward rates will lie above the yield curve when the yield curve is

normal, and below the yield curve when it is inverted. By integrating,1

r(t)t =

∫ t

0

f(s) ds(10)

= r(ti−1)ti−1 +

∫ t

ti−1

f(s) ds(11)

Z(t) = exp

(
−
∫ t

0

f(s) ds

)
(12)

Also

fdi :=
riti − ri−1ti−1
ti − ti−1

=
1

ti − ti−1

∫ ti

ti−1

f(s) ds(13)

which shows that the average of the instantaneous forward rate over any interval [ti−1, ti] is equal

to the discrete forward rate for that interval. Also, if we have a functional form for f , presumably

we then have a functional form for the integral of f , and hence for r. This will be the approach

taken in the monotone convex algorithm.

The discount factor curve being decreasing is equivalent to instantaneous forwards being positive.

So it is required that forwards be positive to avoid arbitrage, but we should also whenever possible

ask for continuity of instantaneous forwards. The pricing of interest sensitive instruments is sensitive

to the stability of forward rates. As pointed out in McCulloch and Kochin [2000], ‘a discontinuous

forward curve implies either implausible expectations about future short-term interest rates, or

implausible expectations about holding period returns’.

Of course, with the inclusion of OISs in the bootstrap, the forward curve could (or should) have

discontinuities at known MPC announcement dates.

Let us return to that rather nasty looking SB curve, and compare the bootstrap under several

interpolation methods.

1We have r(s)s+ C =
∫
f(s) ds, so r(t)t = [r(s)s]t0 =

∫ t
0 f(s) ds.
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The forwards graphed are the one day continuous forwards i.e. T2 = T1 + 1d, to all intents and

purposes this is the same as the instantaneous forwards.

The Hermite rt method allows for a Z curve which is increasing in places; this is equivalent to the

existence of negative forward rates. Raw interpolation is a very simple and very reliable method

which posits piecewise constant forward rates. The MC method is an attempted blend of the best

features: forward rates are positive, but they are also continuous.

2. Interpolation and bootstrap of yield curves - not separate processes

As has been mentioned, many interpolation methods for curve construction are available. What

needs to be stressed is that in the case of bootstrapping yield curves, the interpolation method is

intimately connected to the bootstrap, as the bootstrap proceeds with incomplete information. This

information is ‘completed’ (in a non unique way) using the interpolation scheme.

It is possible to develop iterative schemes for bootstrapping yield curves given some market infor-

mation. This method completes information using an iterative process. The yield curve is found as

a fixed point of this iterative process; the iteration certainly has a fixed point as we may invoke a

theorem of mathematics such as Schauder’s fixed point theorem.

Using this fixed point algorithm is far superior to using something like a multi-dimensional Newton’s

method. The computation burden is almost trivial and the time taken to converge is at least an

order of magnitude less.

The method was illustrated for swap curves in Hagan and West [2006] and for bond curves in Hagan

and West [2008], in both instances in Sections entitled ’Interpolation and Bootstrap of Yield Curves

not two Separate Processes’. We have implemented this technique for other curves such as inflation

curves and OIS curves.

3. The Monotone Convex Method of Interpolation

3.1. The monotone convex algorithm. Many of the ideas of the method of Hyman [1983] have

a natural development with the introduction of the monotone convex method. This method was

developed to resolve the only remaining financial deficiency of Hyman [1983]: very simply, none of

the methods commonly in use are aware that they are trying to solve a financial problem - indeed,
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the breeding ground for these methods is typically engineering or physics. As such, there is no

mechanism which ensures that the forward rates generated by the method are positive (equivalently,

that the discount factor curve is decreasing), and some simple experimentation will uncover a set of

inputs to a yield curve which give some negative forward rates under all of the methods mentioned

here, as seen in Hagan and West [2006]. Thus, in introducing the monotone convex method, we

use the ideas of Hyman [1983], but explicitly ensure that the continuous forward rates are positive

(whenever the discrete forward rates are themselves positive).

The point of view taken in the monotone convex method is that the inputs are (or can be manipulated

to be) discrete forwards belonging to intervals; the interpolation is not performed on the interest

rate curve itself. We may have actual discrete forwards - FRA rates. On the other hand if we have

interest rates r1, r2, . . . , rn for periods �1, �2, . . . , �n then the first thing we do is calculate

fdi =
ri�i − ri−1�i−1
�i − �i−1

1 ≤ i ≤ n(14)

Here we also check that these are all positive, and so conclude that the curve is legal i.e. arbitrage

free - except in those few cases where forward rates may be negative. As an interpolation algorithm

the monotone convex method will now bootstrap a forward curve, and then if required recover the

continuum of risk free rates using

r(�)� =

∫ �

0

f(s) ds(15)

One rather simple observation is that all of the spline methods - quadratic, cubic or quartic splines

- fail in forward extrapolation beyond the interval [�1, �n]. Clearly if the interpolation is on rates

then we will apply horizonal extrapolation to the rate outside of that interval: r(�) = r1 for � < �1

and r(�) = rn for � > �n. So far so good. What happens to the forward rates? Perhaps surprisingly

we cannot apply the same extrapolation rule to the forwards, in fact, we now need to set f(�) = r1

for � < �1 and f(�) = rn for � > �n - consider (9). This makes it almost certain that the forward

curve has a material discontinuity at �1, and probably one at �n too (the latter will be less severe

as the curve, either by design or by nature, probably has a horizontal asymptote as � ↑ �n). But

this problem is only properly resolved if the forward curve has a horizonal asymptote at �n.

In order to avoid this pathology, we now have terms 0 = �0, �1, . . . , �n and the generic interval for

consideration is [�i−1, �i]. A ‘short rate’ (instantaneous) rate may be provided, if not, the algorithm

will model one. Usually the shortest rate that might be input will be an overnight rate, if it is

provided, the algorithm here simply has some ‘overkill’ - there will be an overnight rate and an

instantaneous short rate - but it need not be modified.

fdi is the discrete rate which ‘belongs’ to the entire interval [�i−1, �i]; it would be a mistake to model

that rate as being the instantaneous rate at �i. Rather, we begin by assigning it to the midpoint of

the interval, and then modelling the instantaneous rate at �i as being on the straight line that joins

the adjacent midpoints. Let this be denoted fi. This explains (16). (17) and (18) will ensure, with
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the functional form we choose, that we have f ′(0) = 0 = f ′(�n).2

fi =
�i − �i−1
�i+1 − �i−1

fdi+1 +
�i+1 − �i
�i+1 − �i−1

fdi , for i = 1, 2, . . . , n− 1(16)

f0 = fd1 − 1
2 (f1 − fd1 )(17)

fn = fdn − 1
2 (fn−1 − fdn)(18)

Note that if the discrete forward rates are positive then so are the fi for i = 1, 2, . . . , n− 1.

We now seek an interpolating function f , which will be the instantaneous forward curve, defined on

[0, �n] that has values f(�i) = fi for i = 0, 1, . . . , n that satisfies the following conditions (in some

sense, they are arranged in decreasing order of necessity):

(i)
1

�i − �i−1

∫ �i

�i−1

f(t)dt = fdi , so the discrete forward is recovered by the curve.

(ii) f is positive.

(iii) f is continuous.

(iv) If fdi−1 < fdi < fdi+1 then f(�) is increasing on [�i−1, �i], and if fdi−1 > fdi > fdi+1 then f(�) is

decreasing on [�i−1, �i].

5%
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forward

input values

raw curve

raw forward
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Figure 4. The requirements of the monotone convex algorithm

Let us first normalise things, so we seek a function g defined on [0, 1] such that3

g(x) = f(�i−1 + (�i − �i−1)x)− fdi .(19)

2This is a little anticipatory. We anticipate the functional form (19) and the functional form g(x) = K+Lx+Mx2.

If f ′(0) = 0 then g′(0) = 0 and so L = 0. Also, because g′(0) = 0 we will have g(1) = −2g(0) - we will see this later

- and so M = −3K. Now suppose f0 = fd1 − �(f1 − fd1 ). Then g(0) = −�(f1 − fd1 ) and g(1) = f1 − fd1 . Thus � = 1
2

.
3Strictly speaking, we are defining functions gi, each corresponding to the interval [�i−1, �i]. As the gi are

constructed one at a time, we suppress the subscript.
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Let us give a sketch of how we will proceed. We will choose g to be piecewise quadratic in such a way

that (i) is satisfied by construction. Of course, g is continuous, so (iii) is satisfied. As a quadratic,

it is easy to perform an analysis of where the minimum or maximum occurs, and we thereby are

able to apply some modifications to g to ensure that (iv) is satisfied, while ensuring (i) and (iii) are

still satisfied.

Also, we see a posteriori that if the values of fi had satisfied certain constraints, then (ii) would

have been satisfied. So, the algorithm will be to construct (16), (17) and (18), then modify the

fi to satisfy those constraints, then construct the quadratics, and then modify those quadratics.

Penultimately,

f(�) = g

(
� − �i−1
�i − �i−1

)
+ fdi .(20)

Finally, we use (10) to find the risk free rates.

Thus, the current choices of fi are provisional; we might make some adjustments in order to guar-

antee the positivity of the interpolating function f .

Here follow the details. We have only three pieces of information about g: g(0) = fi−1 − fdi ,

g(1) = fi − fdi , and
∫ 1

0
g(x) dx = 0. We postulate a functional form g(x) = K + Lx+Mx2, having

3 equations in 3 unknowns we get

⎡⎢⎣ 1 0 0

1 1 1

1 1
2

1
3

⎤⎥⎦
⎡⎢⎣ K

L

M

⎤⎥⎦ =

⎡⎢⎣ g(0)

g(1)

0

⎤⎥⎦, and easily solve to find that

g(x) = g(0)[1− 4x+ 3x2] + g(1)[−2x+ 3x2](21)

0
x = 0
� = �i−1

x = 1
� = �i

g(0)

g(1)

Figure 5. The function g

Note that by (16) that (iv) is equivalent to requiring that if fi−1 < fdi < fi then f(�) is increasing

on [�i−1, �i], while if fi−1 > fdi > fi then f(�) is decreasing on [�i−1, �i]. This is equivalent to

requiring that if g(0) and g(1) are of opposite sign then g is monotone.

Now

g′(x) = g(0)(−4 + 6x) + g(1)(−2 + 6x)

g′(0) = −4g(0)− 2g(1)

g′(1) = 2g(0) + 4g(1)

g being a quadratic it is now easy to determine, simply by inspecting g′(0) and g′(1), the behaviour

of g on [0, 1]. The cases where g′(0) = 0 and g′(1) = 0 are crucial; these correspond to g(1) = −2g(0)

and g(0) = −2g(1) respectively. These two lines divide the g(0)/g(1) plane into eight sectors. We
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seek to modify the definition of g on each sector, taking care that on the boundary of any two

sectors, the formulae from those two sectors actually coincide (to preserve continuity). In actual

fact the treatment for every diametrically opposite pair of sectors is the same, so we really have four

cases to consider, as follows (refer Figure 6):

A
A
A
A
A
A
A
AU

A
A
A
A

A
A
A

AK

HHH
HHH

HHH
HHHH

HHj

HHH
HHH

HHY

g(0)

g(1)

g(1) = −2g(0)

g(0) = −2g(1)
(i)

(ii)

(iv)

(iii)

(ii)

(iv)

(iii)

(i)

C
A ℬ

D

Figure 6. The reformulated possibilities for g

(i) In these sectors g(0) and g(1) are of opposite signs and g′(0) and g′(1) are of the same sign,

so g is monotone, and does not need to be modified.

(ii) In these sectors g(0) and g(1) are also of opposite sign, but g′(0) and g′(1) are of opposite sign,

so g is currently not monotone, but needs to be adjusted to be so. Furthermore, the formula

for (i) and for (ii) need to agree on the boundary A to ensure continuity.

(iii) The situation here is the same as in the previous case. Now the formula for (i) and for (iii)

need to agree on the boundary ℬ to ensure continuity.

(iv) In these sectors g(0) and g(1) are of the same sign so at first it appears that g does not need

to be modified. Unfortunately this is not the case: modification will be needed to ensure that

the formula for (ii) and (iv) agree on C and (iii) and (iv) agree on D.

The origin is a special case: if g′(0) = 0 = g′(1) then g(x) = 0 for all x, and fdi−1 = fdi = fdi+1, and

we put f(�) = fdi for � ∈ [�i−1, �i].

So we proceed as follows:

(i) As already mentioned g does not need to be modified. Note that on A we have g(x) =

g(0)(1− 3x2) and on ℬ we have g(x) = g(0)(1− 3x+ 3
2x

2).

(ii) A simple solution is to insert a flat segment, which changes to a quadratic at exactly the right

moment to ensure that
∫ 1

0
g(x) dx = 0. So we take

g(x) =

⎧⎨⎩
g(0) for 0 ≤ x ≤ �

g(0) + (g(1)− g(0))

(
x− �
1− �

)2

for � < x ≤ 1
(22)

� = 1 + 3
g(0)

g(1)− g(0)
=
g(1) + 2g(0)

g(1)− g(0)
(23)
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Note that � −→ 0 as g(1) −→ −2g(0), so the interpolation formula reduces to g(x) = g(0)(1−
3x2) at A, as required.

(iii) Here again we insert a flat segment. So we take

g(x) =

⎧⎨⎩ g(1) + (g(0)− g(1))

(
� − x
�

)2

for 0 < x < �

g(1) for � ≤ x < 1

(24)

� = 3
g(1)

g(1)− g(0)
(25)

Note that � −→ 1 as g(1) −→ − 1
2g(0), so the interpolation formula reduces to g(x) = g(0)(1−

3x+ 3
2x

2) at ℬ, as required.

(iv) We want a formula that reduces in form to that defined in (ii) as we approach C, and to that

defined in (iii) as we approach D. This suggests

g(x) =

⎧⎨⎩
A+ (g(0)−A)

(
� − x
�

)2

for 0 < x < �

A+ (g(1)−A)

(
x− �
1− �

)2

for � < x < 1

(26)

where A = 0 when g(1) = 0 - so the first line satisfies (iii)) and A = 0 when g(0) = 0 (so the

second line satisfies (ii). Straightforward calculus gives∫ 1

0

g(x) dx =
2

3
A+

�

3
g(0) +

1− �
3

g(1)

and so

A = − 1
2 [�g(0) + (1− �) g(1)]

A simple choice satisfying the various requirements is

� =
g(1)

g(1) + g(0)
(27)

A = − g(0)g(1)

g(0) + g(1)
(28)

In this case (and this case only) we might need to be concerned about the possibility that

� = 0 or � = 1, else (in some languages and some implementations) there is the possibility of

a divide by 0. This

∙ If g(1) = 0, then � = 0 = A, and g(x) = 0 except at x = 0.

∙ If g(0) = 0, then � = 1, A = 0 and g(x) = 0 except at x = 1.

3.2. Integrating the g function. We will have need to calculate
∫ �
�
f(s) ds for some values of �,

�. Suppose �i−1 ≤ � < � ≤ �i, let g apply to the interval [�i−1, �i], and suppose G′ = g. Then using

(20) we have∫ �

�

f(s) ds = (� − �)fdi + (�i − �i−1)

[
G

(
� − �i−1
�i − �i−1

)
−G

(
�− �i−1
�i − �i−1

)]
(29)

Our typical integral will be as in (11), so the argument of the second evaluation of G will be 0.

Thus, we arrange that G(0) = 0. This means that each calculation of r will require only one and

not two evaluations of G. The formula for G clearly depends as before on which region applies, and

if g is defined piecewise then the definition of G on [�, 1] must be modified appropriately to ensure

that at � its value coincides at � with the definition on [0, �]. So we proceed as follows:



12 GRAEME WEST, FINANCIAL MODELLING AGENCY

Figure 7. The g function as we cross the boundaries.

(i) Via (21) we have

G(x) = g(0)(x− 2x2 + x3) + g(1)(−x2 + x3)

(ii)

G(x) =

⎧⎨⎩g(0)x for 0 < x < �

g(0)x+ 1
3 (g(1)− g(0)) (x−�)3

(1−�)2 for � ≤ x < 1
(30)

(iii)

G(x) =

⎧⎨⎩g(1)x+ 1
3 (g(0)− g(1))

[
� − (�−x)3

�2

]
for 0 < x < �

g(1)x+ 1
3 (g(0)− g(1))� for � ≤ x < 1

(31)

(iv)

G(x) =

⎧⎨⎩Ax+ 1
3 (g(0)−A)

[
� − (�−x)3

�2

]
for 0 < x < �

Ax+ 1
3 (g(0)−A)� + 1

3 (g(1)−A) (x−�)3
(1−�)2 for � ≤ x < 1

(32)

In the special cases mentioned, G = 0.

If �i−1 ≤ � < �i < � then
∫ �
�
g(s) ds =

∫ �i
�
g(s) ds+

∫ �
�i
g(s) ds and we recurse down until the above

condition is satisfied.

3.3. Extrapolation. The methodology has constructed the f function on the interval [0, �1]. We

integrate to find the r function on that interval.

For � > �n note that f ′(�n) = 0. Thus for � > �n we can put f(�) = f(�n). Now we use (10):

r(�)� = r(�n)�n +

∫ �

�n

f(s) ds

= r(�n)�n +

∫ �

�n

f(�n) ds

= r(�n)�n + (� − �n)f(�n)
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3.4. Ensuring positivity. Suppose we wish to guarantee that the interpolatory function f is

everywhere positive.

Clearly from the formula (20) it suffices to ensure that g(x) > −fdi for x ∈ [0, 1]. Now g(0) =

fi−1 − fdi > −fdi and g(1) = fi − fdi > −fdi since fi−1, fi are positive. Thus the inequality is

satisfied at the endpoints of the interval. Now, in regions (i), (ii) and (iii), g is monotone, so those

regions are fine.

In region (iv) g is not monotone. g is positive at the endpoints and has a minimum of A (as in

(28)) at the x-value � (as in (27)). So, it now suffices to prove that g(0)g(1)
g(0)+g(1) < fdi . This is the case

if fi−1, fi < 3fdi . To see this, note that then 0 < g(0), g(1) < 2fdi and the result follows, since if

0 < y, z < 2a then y+z
yz = 1

z + 1
y >

1
2a + 1

2a = 1
a and so yz

y+z < a.

We might choose the slightly stricter condition fi−1, fi < 2fdi .

3.5. Amelioration. By shifting the fi values we can make the interpolated curve smoother. The

penalty is that the interpolated function will be less local; in some intervals [�i−1, �i] the value of

f(�) might depend on fdj for i− 2 ≤ j ≤ i+ 2. Thus in any particular application we must make a

conscious decision as to whether we want the most locality or the best smoothness.

Let us consider the value fi ≡ f(�i) between intervals i and i+ 1. Suppose first that fdi > fdi−1. If

we also have fdi+1 > fdi , then f(�) is increasing in the interval i, and the smoothest results occur

when fi is in the range:

(33) fdi + 1
2 (fdi − fi−1) < fi < fdi + 2(fdi − fi−1)

This is our target range, the range in which we would prefer fi to lie. Suppose now that fdi+1 < fdi .

Then f(�) has a maximum in the interval. The maximum becomes steadily smaller as fi increases

towards fdi , but our interpolation function becomes increasingly asymmetric. In this case our target

range is anything in

(34) fdi − 1
2�(fdi − fi−1) < fi < fdi

where the parameter 0 ≤ � ≤ 1 determines the smoothness of the interpolated function. Experi-

mentally � = 0.2 seems to work well.

We cannot afford to have criteria for fi which depend on values of f(�) at other endpoints; this could

lead to unpredictable non-locality and stability issues for marginal gains in smoothness. Instead

we use the linear approximation to fi−1 as its proxy. Thus, to get good smoothness results for the

interval i, we would like fi to fall in the range

(35)
fdi + 1

2�
−
i < f−i < fdi + 1

2�
−
i if fdi−1 < fdi < fdi+1

fdi − 1
2��

−
i < f−i < fdi if fdi−1 < fdi , f

d
i ≥ fdi+1

The targets for fi if fdi < fdi−1 are obtained from similar considerations. Thus, considerations about

the smoothness within interval i leads to the target range

(36) fmin
i,1 ≤ fi ≤ fmax

i,1

(37)

fmin
i,1 = min(fdi + 1

2�
−
i , f

d
i+1), fmax

i,1 = min(fdi + 2�−i , f
d
i+1) if fdi−1 < fdi ≤ fdi+1,

fmin
i,1 = max(fdi − 1

2��
−
i , f

d
i+1), fmax

i,1 = fdi if fdi−1 < fdi , f
d
i > fdi+1,

fmin
i,1 = fdi , fmax

i,1 = min(fdi − 1
2��

−
i , f

d
i+1) if fdi−1 ≥ fdi , fdi ≤ fdi+1,

fmin
i,1 = max(fdi + 2�−i , f

d
i+1), fmax

i,1 = max(fdi + 1
2�
−
i , f

d
i+1) if fdi−1 ≥ fdi > fdi+1
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where

(38) �−i =
�i − �i−1
�i − �i−2

(fdi − fdi−1)

Similar considerations about the smoothness of f(�) in the interval i+ 1 lead to the target ranges

(39) fmin
i,2 ≤ fi ≤ fmax

i,2

(40)

fmin
i,2 = max(fdi+1 − 2�+i , f

d
i ), fmax

i,2 = max(fdi+1 − 1
2�

+
i , f

d
i ) if fdi < fdi+1 ≤ fdi+2,

fmin
i,2 = max(fdi+1 + 1

2��
+
i , f

d
i ), fmax

i,2 = fdi+1 if fdi < fdi+1, f
d
i+1 > fdi+2,

fmin
i,2 = fdi+1, fmax

i,2 = min(fdi+1 + 1
2��

+
i , f

d
i ) if fdi ≥ fdi+1, f

d
i+1 < fdi+2,

fmin
i,2 = min(fdi+1 − 1

2�
+
i , f

d
i ), fmax

i,2 = min(fdi+1 − 2�+i , f
d
i ) if fdi ≥ fdi+1 ≥ fdi+2

where

(41) �+i =
�i+1 − �i
�i+2 − �i

(fdi+2 − fdi+1)

To ameliorate the max’s, min’s, and general ugliness of the interpolant, we use the following proce-

dure:

(a) add an additional interval at the beginning and the end:

�−1 = �0 − (�1 − �0) , fd0 = fd1 −
�1 − �0
�2 − �0

(
fd2 − fd1

)
(42)

�n+1 = �n + (�n − �n−1) , fdn+1 = fdn +
�n − �n−1
�n − �n−2

(
fdn − fdn−1

)
.(43)

(b) Select the fi’s by linearly interpolating on the midpoints of the intervals:

(44) fi =
�i − �i−1
�i+1 − �i−1

fdi+1 +
�i+1 − �i
�i+1 − �i−1

fdi , for i = 0, 1, . . . , n.

Note that with the false intervals, this formula works for i = 0 and i = n.

(c) For each i = 1, 2, . . . , n− 1,

(i) if the target ranges overlap, define the common range

(45) max(fmin
i,1 , f

min
i,2 ) ≤ fi ≤ min(fmax

i,1 , fmax
i,2 ).

If fi is outside this common range, make the minimum adjustment to fi to place it in the

common range:

(46)
if fi < max(fmin

i,1 , f
min
i,2 ) set fi = max(fmin

i,1 , f
min
i,2 )

if fi > min(fmax
i,1 , fmax

i,2 ) set fi = min(fmax
i,1 , fmax

i,2 )

(ii) if the target ranges don’t overlap, define the gap by

(47) min(fmax
i,1 , fmax

i,2 ) ≤ fi ≤ max(fmin
i,1 , f

min
i,2 ).

If fi is below or above the gap, make the minimum adjustment to fi to place it on the

edge of the gap:

(48)
if fi < min(fmax

i,1 , fmax
i,2 ) set fi = min(fmax

i,1 , fmax
i,2 )

if fi > max(fmin
i,1 , f

min
i,2 ) set fi = max(fmin

i,1 , f
min
i,2 )
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(d) if now
∣∣f0 − fd0 ∣∣ > 1

2

∣∣f1 − fd0 ∣∣, replace f0 with

(49) f0 = fd1 − 1
2

(
f1 − fd0

)
,

provided we don’t know the value of f0 (some markets explicitly quote f0.)

(e) Similarly, if
∣∣fn − fdn∣∣ > 1

2

∣∣fn−1 − fdn∣∣, replace fn with

(50) fn = fdn + 1
2

(
fdn − fn−1

)
.

(f) If the application requires f(�) > 0, apply the transformations of §3.4.

3.6. Algorithm. Our algorithm is

(1) Determine the fdi from the input data.

(2) Define fi for i = 0, 1, . . . , n as in (16), (17) and (18).

(3) If f is required to be everywhere positive, then collar f0 between 0 and 2fd1 , for i = 1, 2, . . . , n− 1

collar fi between 0 and 2 min(fdi , f
d
i+1), and collar fn between 0 and 2fdn. If f is not required

to be everywhere positive, simply omit this step.

(4) Construct g with regard to which of the four sectors we are in.

(5) Define f as in (20).

(6) If required recover r as in (11). Integration formulae are easily established as the functional

forms of g are straightforward.
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